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Extraction and Analysis of Facebook
Friendship Relations

Salvatore Catanese, Pasquale De Meo, Emilio Ferrara, Giacomo Fiumara,
and Alessandro Provetti

Abstract Online social networks (OSNs) are a unique web and social phenomenon,
affecting tastes and behaviors of their users and helping them to maintain/create
friendships. It is interesting to analyze the growth and evolution of online social
networks both from the point of view of marketing and offer of new services and
from a scientific viewpoint, since their structure and evolution may share similarities
with real-life social networks. In social sciences, several techniques for analyzing
(off-line) social networks have been developed, to evaluate quantitative properties
(e.g., defining metrics and measures of structural characteristics of the networks) or
qualitative aspects (e.g., studying the attachment model for the network evolution,
the binary trust relationships, and the link prediction problem). However, OSN
analysis poses novel challenges both to computer and Social scientists. We present
our long-term research effort in analyzing Facebook, the largest and arguably
most successful OSN today: it gathers more than 500 million users. Access to
data about Facebook users and their friendship relations is restricted; thus, we
acquired the necessary information directly from the front end of the website, in
order to reconstruct a subgraph representing anonymous interconnections among
a significant subset of users. We describe our ad hoc, privacy-compliant crawler
for Facebook data extraction. To minimize bias, we adopt two different graph
mining techniques: breadth-first-search (BFS) and rejection sampling. To analyze
the structural properties of samples consisting of millions of nodes, we developed a
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specific tool for analyzing quantitative and qualitative properties of social networks,
adopting and improving existing Social Network Analysis (SNA) techniques and
algorithms.

Introduction

The increasing popularity of online social networks (OSNs) is witnessed by the huge
number of users that MySpace, Facebook, etc. acquired in a short amount of time.
The growing accessibility of the web, through several media, gives to most users a
24/7 online presence and encourages them to build a online mesh of relationships.

As OSNs become the tools of choice for connecting people, we expect that their
structure will increasingly mirror real-life society and relationships. At the same
time, with an estimated 13 million transactions per second (at peak), Facebook is
one of the most challenging computer science artifacts, posing several optimization,
scalability, and robustness challenges.

The essential feature of Facebook is the friendship relation between participants.
It consists, mainly, in a permission to consult each others’ friends list and posted
content: news, photos, links, blog posts, etc.; such permission is mutual. In this
chapter, we consider the Facebook friendship graph as the (nondirected) graph
having FB users as vertices and edges represent their friendship relation.

The analysis of OSN connections is a fascinating topic on multiple levels. First,
a complete study of the structure of large real (i.e., off-line) communities was
impossible or at least very expensive before, even at fractions of the scale considered
in OSN analysis. Second, data is clearly defined by some structural constraints,
usually provided by the OSN structure itself, w.r.t. real-life relations, often hardly
identifiable. The interpretation of these data opens up new fascinating research
issues, e.g., is it possible to study OSNs with the tools of traditional Social Network
Analysis, as in Wasserman-Faust [89] and [69]? To what extent the behavior of OSN
users is comparable to that of people in real-life social networks [39]? What are the
topological characteristics of the relationships network (friendship, in the case of
FB) of OSN [4]? And what about their structure and evolution [58]?

To address these questions, further computer science research is needed to design
and develop the tools to acquire and analyze data from massive OSNs. First, proper
social metrics need to be introduced, in order to identify and evaluate properties
of the considered OSN. Second, scalability is an issue faced by anyone who wants
to study a large OSN independently from the commercial organization that owns
and operates it. For instance, last year Gjoka et al. [42] estimated the crawling
overhead needed to collect the whole Facebook graph in 44 Tb of data. Moreover,
even when such data could be acquired and stored locally (which, however, raises
storage issues related to the social network compression [16, 17]), it is nontrivial to
devise and implement effective functions that traverse and visit the graph or even
evaluate simple metrics. In literature, extensive research has been conducted on
sampling techniques for large graphs; only recently, however, studies have shed
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light on the bias that those methodologies may introduce. That is, depending on
the method by which the graph has been explored, certain features may result
over/underrepresented w.r.t. the actual graph.

Our long-term research on these topics is presented in this chapter. We describe
in detail the architecture and functioning modes of our ad hoc Facebook crawler,
by which, even on modest computational resources, we can extract large samples
containing several milions of nodes. Two recently collected samples of about
eight millions of nodes each are described and analyzed in detail. To comply
with the FB end-user licence, data is made anonymous upon extraction, hence
we never memorize users’ sensible data. Next, we describe our newly developed
tool for graph analysis and visualization, called LogAnalysis. LogAnalysis may
be used to compute the metrics that are most pertinent to OSN graph analysis,
and can be adopted as an open-source, multiplatform alternative to the well-known
NodeXL tool.

Background and Related Literature

The task of extracting and analyzing data from Online Social Networks has attracted
the interest of many researchers, e.g., in [7, 39, 93]. In this section, we review some
relevant literature directly related to our approach.

In particular, we first discuss techniques to crawl large social networks and
collect data from them (see section “Data Collection in OSN”). Collected data are
usually mapped onto graph data structures (and sometimes hypergraphs) with the
goal of analyzing their structural properties.

The ultimate goal of these efforts is perhaps best laid out by Kleinberg [56]:
topological properties of graphs may be reliable indicators of human behaviors.
For instance, several studies show that node degree distribution follows a power
law, both in real and online social networks. That feature points to the fact that
most social network participants are often inactive, while few key users generate a
large portion of data/traffic. As a consequence, many researchers leverage on tools
provided from graph theory to analyze the social network graph with the goal,
among others, of better interpreting personal and collective behaviors on a large
scale. The list of potential research questions arising from the analysis of OSN
graphs is very long; in the following, we shall focus on three themes which are
directly relevant to our research:

1. Node Similarity Detection, i.e., the task of assessing the degree of similarity of
two users in an OSN (see section “Similarity Detection”)

2. Community Detection, i.e., the task of of finding groups of users (called
communities) who frequently interact with each other but seldom with those
outside their community (see section “Community Detection”)

3. Influential User Detection, i.e., the task of identifying users capable of stimulat-
ing other users to join activities/discussions in their OSN (see section “Influential
User Detection”).



294 S. Catanese et al.

Data Collection in OSN

The most works focusing on data collection adopt techniques of web information
extraction [34], to crawl the front end of websites; this is because OSN datasets are
usually not publicly accessible; data rests in back-end databases that are accessible
only through the web interface.

In [63] the problem of sampling from large graphs adopting several graph mining
techniques, in order to establish whether it is possible to avoid bias in acquiring a
subset of the whole graph of a social network is discussed. The main outcome of the
analysis in [63] is that a sample of size of 15% of the whole graph preserves most
of the properties.

In [69], the authors crawled data from large online social networks like Orkut,
Flickr, and LiveJournal. They carried out an in-depth analysis of OSN topological
properties (e.g., link symmetry, power-law node degrees, groups formation) and
discussed challenges arising from large-scale crawling of OSNs.

Ye et al. [93] considered the problem of crawling OSNs analyzing quantitative
aspects like the efficiency of the adopted visiting algorithms, and bias of data
produced by different crawling approaches.

The work by Gjoka et al. [42] on OSN graphs is perhaps the most similar to our
current research, e.g., in [22]. Gjoka et al. have sampled and analyzed the Facebook
friendship graph with different visiting algorithms namely, BFS, Random Walk,
and Metropolis-Hastings Random Walks. Our objectives differ from those of Gjoka
et al. because their goal is to produce a consistent sample of the Facebook graph.
A sample is defined consistent when some of its key structural properties, i.e., node
degree distribution, assortativity and clustering coefficient approximate fairly well
the corresponding properties of the original Facebook graph. Vice versa, our work
aims at crawling a portion of the Facebook graph and to analytically study the
structural properties of the crawled data.

A further difference with [42] is in the strategy for selecting which nodes to visit:
Gjoka’s strategy requires to know in advance the degree of the considered nodes.
Nodes with the highest degree are selected and visited at each stage of the sampling.
In the Facebook context, a node’s degree represents the number of friends a user has;
such information is available in advance by querying the profile of the user. Such an
assumption, however, is not applicable if we consider other online social networks.
Hence, to know the degree of a node, we should preliminarily perform a complete
visit of the graph, which may not be feasible for large-scale OSN graphs.

Similarity Detection

Finding similar users of a given OSN is a key issue in several research fields
like Recommender Systems, especially Collaborative Filtering (CF) Recommender
Systems [3]. In the context of social networks, the simplest way to compute user
similarities is by means of accepted similarity metrics such as the well-known
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Jaccard coefficient [50]. However, the usage of the Jaccard coefficient is often
not satisfactory because it considers only the acquaintances of a user in a social
network (and, therefore, local information) and does not take global information
into account. A further drawback consists of the fact that users with a large number
of acquaintances have a higher probability of sharing some of them w.r.t. users with
a small number of acquaintances; therefore, they are likely to be regarded as similar
even if no real similarity exists between them. Adamic and Adar [1] proposed that
the similarity of two users increases if they share acquaintances who, in turn, have
a low number of acquaintances themselves.

In order to consider global network properties, many approaches rely on the
idea of regular equivalence, i.e., on the idea that two users are similar if their
acquaintances are similar too. In [13] the problem of computing user similarities
is formalized as an optimization problem. Other approaches compute similarities
by exploiting matrix-based methods. For instance, the approaches of [27, 61] use
a modified version of the Katz coefficient, SimRank [53], provides an iterative
fixpoint method. The approach of [14] operates on directed graphs and uses an
iterative approach relying on their spectral properties.

Some authors studied computational complexity of social network analysis
with an emphasis on the problem of discovering links between social network
users [85, 86]. To this purpose, tools like Formal Concept Analysis and Matrix
Factorization are described and employed in this chapter.

To describe these approaches, assume to consider a social network and let G D
hV; Ei be the graph representing it; each node in V represents a user, whereas an
edge specifies a tie between a pair of users (in particular, the fact that a user knows
another user).

In the first stage, Formal Concept Analysis is applied to map G onto a graph G0.
The graph G0 is more compact than G (i.e., it contains less nodes and edges of G)
but, however, it is sparse, i.e., a node in G0 still has few connections with other
nodes. As a consequence, the task of predicting if two nodes are similar is quite
hard and comparing the number of friends/acquaintances they share is not effective
because, in most cases, two users do not share any common friend and, therefore, the
similarity degree of an arbitrary pair of users will be close to 0. To alleviate sparsity,
Singular Value Decomposition [46] (SVD) is applied. Experiments provided in [85]
show that the usage of SVD is effective in producing a more detailed and refined
analysis of social network data.

The SVD is a technique from Linear Algebra which has been successfully em-
ployed in many fields of computer science like Information Retrieval; in particular,
given a matrix A, the SVD allows the matrix A to be decomposed as follows:

A D U†V;

being U and V two orthogonal matrices (i.e., the columns of U and V are pairwise
orthogonal); the matrix † is a diagonal matrix whose elements coincide with the
square roots of the eigenvalues of the matrix AAT ; as usual, the symbol AT denotes
the transpose of the matrix A.
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The SVD allows to decompose a matrix A into the product of three matrices and if
we would multiply these three matrices, we would reconstruct the original matrix A.
As a consequence, if A is the adjacency matrix of a social network, any operation
carried out on A can be equivalently performed on the three matrices U, †, and V
in which A has been decomposed.

The main advantage of such a transformation is that matrices U and V are dense
and, then, we can compute the similarity degree of two users even if the number of
friends they share is 0.

Community Detection

The problem of detecting groups of related nodes in a single social network has
been largely analyzed in the physics, bioinformatics and computer science literature
and is often known as community detection [71, 72] and studied, among others, by
Borgatti et al. [18].

A number of community detection algorithms are based on the concept of
network modularity. In particular, if we assume that an OSN S (represented by
means of a graph G) has been partitioned into m communities, the corresponding
network modularity Q is defined as follows:

Q D
mX

sD1

�
l2
s

L
� d 2

s

2L

�
(12.1)

where L is the number of edges in G, ls is the number of edges between nodes
belonging to the sth community, and ds is the sum of the degrees of the nodes in the
sth community.

High values of Q reflect a high value of ls for each identified community; in turn,
this implies that detected communities are highly cohesive and weakly coupled.
Therefore, it is not surprising that the idea inspiring many community detection
algorithms is to maximize the function Q. Unfortunately, maximizing Q is NP-hard
[20], thus viable heuristics must be considered.

A first heuristics is the Girvan-Newman algorithm (hereafter, GN) [41]. It relies
on the concept of edge betweenness; in particular, given an edge e of S , its edge
betweenness B.e/ is defined as

B.e/ D
X

ni 2S

X

nl2S

npe.ni ; nl /

np.ni ; nl /
(12.2)

where ni and nl are nodes of S , np.ni ; nl / is the number of distinct shortest paths
between ni and nl , and npe.ni ; nl / is the number of distinct shortest paths between
ni and nl containing e itself.
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Intuitively, edges with a high betweenness connect nodes belonging to different
communities. As a consequence, their deletion would lead to an increase of Q.
Algorithm GN relies on this intuition. It first ranks edges on the basis of their
betweenness; then it removes the edge with the highest betweenness (Step 1). After
this, it recomputes the betweenness of the remaining edges and the value of Q

(Step 2). It repeats Steps 1 and 2 until it does not observe any significant increase of
Q. At each iteration, each connected component of S identifies a community. The
computational complexity of GN is O.N 3/, N being the number of nodes of S. The
cubic complexity algorithm may not be scalable enough for the size of online social
networks but a more efficient – O.N log2N / – implementation of GN can be found
in [25].

Blondel et al. [15] propose to apply GN on the neighborhood of each node rather
than on the whole network. Once communities have been identified, the group of
nodes associated with a community is replaced by a supernode, thus producing
a smaller graph. This process is iterated and, at each iteration, the function Q is
recomputed. The algorithm ends when Q does not significantly increase anymore.

Radicchi et al. [80] illustrate an algorithm which strongly resembles GN. In
particular, for each edge e of S , it computes the so-called edge clustering coefficient
of e, defined as the ratio of the number of cycles containing e to the maximum
number of cycles which could potentially contain it. Next, GN is applied with
the edge clustering coefficient (rather than edge betweenness) as the parameter of
reference. The most important advantage of this approach is that the computational
cost of the edge clustering coefficient is significantly smaller than that of edge
betweenness.

All approaches described above use the greedy technique to maximize Q. In
[48], the authors propose a different approach which maximizes Q by means of
the simulated annealing technique. That approach achieves a higher accuracy but
can be computationally very expensive.

Palla et al. [75] describes CFinder, which, to the best of our knowledge, is the first
attempt to find overlapping communities, i.e., communities which may share some
nodes. In CFinder, communities are detected by finding cliques of size k, where k
is a parameter provided by the user. Such a problem is computationally expensive,
but experiments showed that it scales well on real networks and it achieves a great
accuracy.

The approach of [73] uses a Bayesian probabilistic model to represent an
online social network. An interesting feature of [73] is the capability of finding
group structures, i.e., relationships among the users of a social network which go
beyond those characterizing conventional communities. For instance, this approach
is capable of detecting groups of users who show forms of aversion with each other
rather than just users who are willing to interact. Experimental comparisons of
various approaches to finding communities in OSNs are reported in [35, 65].

In [55], the authors propose CHRONICLE, an algorithm to find time-evolving
communities in a social network. CHRONICLE operates in two stages: in the first
one, it considers T “snapshots” of the social network in correspondence of T differ-
ent timestamps. For each timestamp, it applies a density-based clustering algorithm
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on each snapshot to find communities in the social network. After this, it builds a
T -partite graph GT which consists of T layers each containing the communities
of nodes detected in the corresponding timestamp. It adds also some edges linking
adjacent layers: they indicate that two communities, detected in correspondence of
consecutive timestamps, share some similarities. As a consequence, the edges and
the paths in GT identify similarities among communities over time.

Influential User Detection

A recent trend in OSN analysis is the identification of influential users [40, 74].
Influential users are those capable of stimulating others to join OSN activities and/or
to actively contribute to them.

In Weblog (blog) analysis, there is a special emphasis on so-called leader
identification. In particular, Song et al. [87] suggested to model the blogosphere
as a graph (whose nodes represent bloggers whereas edges model the fact that a
blogger cites another one). In [66], the authors introduce the concept of starter, i.e., a
user who first generates information that catches the interest of fellow users/readers.
Among others, the approach of [66] has deployed the Random Walk technique to
find starters. Researchers from HP Labs analyzed user behaviors on Twitter [82];
they found that influential users should not only catch attention from other users but
they should also overcome the passivity of other users and spur them to get involved
in OSN activities. To this purpose, they developed an algorithm (based on the HITS
algorithm of [57]) to assess the degree of influence of a user. Experimental results
show that high levels of popularity of a user do not necessarily imply high values in
the degree of influence.

Sampling the Facebook Social Graph

Our work on OSN analysis began with the goal to understand the organization of
popular OSN, and as of 2010 Facebook was by far the largest and most studied.
Facebook gathers more than 500 million active users, and its growth rate has been
proved to be the highest among all the other competitors in the last few years. More
than 50% of users log on to the platform in any given day. Coarse statistics about
the usage of the social network is provided by the company itself.1 Our study is
interested in analyzing the characteristics and the properties of this network on a
large scale. In order to reach this goal, first of all we had to acquire data from this
platform, and later we proceed to their analysis.

1Please refer to http://www.facebook.com/press/info.php?statistics

http://www.facebook.com/press/info.php?statistics
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The Structure of the Social Network

The structure of the Facebook social network is simple. Each subscribed user
can be connected to others via friendship relationships. The concept of friendship
is bilateral, this means that users must confirm the relationships among them.
Connections among users do not follow any particular hierarchy, thus we define
the social network as unimodal.

This network can be represented as a graph G D .V; E/ whose nodes V represent
users and edges E represent friendship connections among them. Because of the
assumption on the bilateralness of relationships, the graph is undirected. Moreover,
the graph we consider is unweighted, because all the friendship connections have
the same value within the network. However, it could be possible to assign a weight
to each friendship relation, for instance, considering the frequency of interaction
between each pair of users, or different criteria. Considering the assumption that
loops are not allowed, we conclude that in our case it is possible to use a
simple unweighted undirected graph to represent the Facebook social network. The
adoption of this model has been proved to be optimal for several social networks
(see [45]).

Although choosing the model for representing a network could appear to be
simple, this phase is important and could not be trivial. Compared to Facebook,
the structure of other social networks requires a more complex representative
model. For example, Twitter should be represented using a multiplex network; this
is because it introduces different types of connections among users (“following,”
“reply to” and “mention”) [83]. Similar considerations hold for other OSNs, such as
aNobii [5], Flickr, and YouTube [69].

How to Get Information About the Structure of the Network

One important aspect to be considered for representing the model of a social network
is the amount of information about its structure we have access to. The ideal
condition would be to have access to the whole network data, for example acquiring
them directly from the company which manages the social networking service. For
several reasons (see further), most of the time this solution is not viable.

Another option is to obtain data required to reconstruct the model of the network,
acquiring them directly from the platform itself, exploiting its public interface. In
other words, a viable solution is to collect a representative sample of the network
to correctly represent its structure. To this purpose, it is possible to exploit web
data mining techniques [34] to extract data from the front-end of the social network
websites. This implies that, for very large OSNs, such as Facebook, Twitter, etc., it
is hard or even impossible to collect a complete sample of the network. The first
limitation is related to the computational overhead of a large-scale web mining
task. In the case of Facebook, for example, to crawl the friend-list web page
(dimension '200 KB) for the half billion users, it would approximately require to



300 S. Catanese et al.

download more than 200 KB � 500 M D 100 Tb of HTML data. Even if possible, the
acquired sample would be a snapshot of the structure of the graph at the time of the
mining process. Moreover, during the sampling process, the structure of the network
slightly changes. This is because, even if short, the data mining process requires
a nonnegligible time, during which the connections among users evolve, thus the
social network, and its structure, changes accordingly. For example, the growth
rate of Facebook has been estimated in the order of 0.2% per day [42]. In other
words, neither all these efforts could ensure to acquire a perfect sample. For these
reasons, a widely adopted approach is to collect small samples of a network, trying
to preserve characteristics about its structure. There are several different sampling
techniques that can be exploited; each algorithm ensures different performances,
bias of data, etc.

For our experimentation we collected two significant samples of the structure
of the social network, of a size comparable to other similar studies [24, 42, 92]. In
particular, we adopted two different sampling algorithms, namely, “breadth-first-
search” and “Uniform.” The first is proved to introduce bias in certain conditions
(e.g., in incomplete visits) toward high-degree nodes [59]. The latter is proved to be
unbiased by construction [42].

Once collected, data are compared and analyzed in order to establish their quality,
study their properties and characteristics. We consider two quality criteria to evalu-
ate the samples: (1) coherency with statistical data provided by the social network
itself; (2) congruency with results reported by similar studies. Considerations about
the characteristics of both the “breadth-first-search” and the “Uniform” samples
follow in section “Experimental Work.”

How to Extract Data from Facebook

Companies providing online social networking services, such as Facebook, Twitter,
etc., do not have economic interests in sharing their data about users, because their
business model mostly relies on advertising. For example, exploiting this informa-
tion, Facebook provides unique and efficient services to advertising companies.
Moreover, questions about the protection of these data have been advanced, for
privacy reasons, in particular for Facebook [47, 67].

In this social network, for example, information about users and the interconnec-
tions among them, their activities, etc. can only be accessed through the interface of
the platform. To preserve this condition some constraints have been implemented.
Among others, a limit is imposed to the amount of information accessible from
profiles of users not in friendship relations among them. There are also some
technical limitations, e.g., the friend list is dispatched through an asynchronous
script, so as to prevent naive techniques of crawling. Some web services, such
as the “Graph API,”2 have been provided during the last few months of 2010,

2Available from http://developers.facebook.com/docs/api

http://developers.facebook.com/docs/api
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Fig. 12.1 Architecture of the data mining platform

by the Facebook developers team, but they do not bypass these limitations (and
they eventually add even more restrictions). As of 2010, the structure of this social
network can be accessed only exploiting techniques typical of web data mining.

The Sampling Architecture

In order to collect data from the Facebook platform, we designed a web data mining
architecture, which is composed of the following elements (see Fig. 12.1): (1) a
server running the mining agent(s); (2) a cross-platform Java application, which
implements the logic of the agent; and (3) an Apache interface, which manages
the information transfer through the web. While running, the agent(s) query the
Facebook server(s) obtaining the friend-list web pages of specific requested users
(this aspect depends on the implemented sampling algorithm), reconstructing the
structure of relationships among them. Collected data are stored on the server
and, after a postprocessing step (see section “Data Preparation”), they are deli-
vered (eventually represented using an XML standard format [21]) for further
experimentation.

The Facebook Crawler

The cross-platform Java agent which crawls the Facebook front end is the core of
our mining platform. The logic of the developed agent, regardless of the sampling
algorithm implemented, is depicted in Fig. 12.2. The first preparative step for the
agent execution includes choosing the sampling methodology and configuring some
technical parameters, such as termination criterion/a, maximum running time, etc.
Thus, the crawling task can start or be resumed from a previous point. During its
execution, the crawler visits the friend-list page of a user, following the chosen
sampling algorithm directives, for traversing the social graph. Data about new
discovered nodes and connections among them are stored in a compact format,
in order to save I/O operations. The process of crawling concludes when the
termination criterion/a is/are met.
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Fig. 12.2 State diagram of the data mining process

Table 12.1 HTTP requests flow of the crawler: authentication and mining steps

Number Action Protocol Method URL KB

1 Open the Facebook page
HTTP GET www.facebook.com/ 242

2 Login providing credentials
HTTPS POST login.facebook.com/login.php 234
HTTP GET /home.php 87

3 Visit the friend-list page of a specific user
HTTP GET /friends/ajax/friends.php?id=#&filter=afp 224

During the data mining step, the platform exploits the Apache HTTP Request
Library3 to communicate with the Facebook server(s). After an authentication
phase which uses a secure connection and “cookies” for logging into the Facebook
platform, HTML friend-list web pages are obtained via HTTP requests. This process
is described in Table 12.1.

Limitations

During the data mining task we noticed a technical limitation imposed by Facebook
on the dimension of the dispatched friend-list web pages, via HTTP requests. To
reduce the traffic through its network, Facebook provides shortened friend lists not
exceeding 400 friends. During a normal experience of navigation on the website,
if the dimension of the friend-list web page exceeds 400 friends, an asynchronous
script fills the page with the remaining. This result is not reproducible using an agent
based on HTTP requests. This problem can be avoided using a different mining
approach, for example adopting visual data extraction techniques [34]. Data can
be retrieved directly from the web page using specific scripts designed for a web
browser, or alternatively by developing an agent which integrates a web browser for
rendering the pages. This approach is not viable for large-scale mining tasks, but
we already dealt with this approach in [22] for a smaller experimentation. In section
“Degree Distribution,” we investigated the impact of this limitation on the samples.

3http://httpd.apache.org/apreq

www.facebook.com/
login.facebook.com/login.php
/home.php
/friends/ajax/friends.php?id=#&filter=afp
http://httpd.apache.org/apreq
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Breadth-First-Search Sampling

The breadth-first-search (BFS) is an uninformed traversal algorithm which aims to
visit a graph. Starting from a “seed node,” it explores its neighborhood; then, for
each neighbor, it visits its unexplored neighbors, and so on, until the whole graph is
visited (or, alternatively, if a termination criterion is met). This sampling technique
shows several advantages: (1) ease of implementation; (2) optimal solution for
unweighted graphs; (3) efficiency. For these reasons, it has been adopted in a
variety of OSN mining studies, including [22,24,42,69,92,93]. In the last year, the
hypothesis that the BFS algorithm produces biased data, toward high-degree nodes,
if adopted for partial graph traversal, has been advanced by [59]. This is because,
in the same (partial) graph, obtained adopting a BFS visiting algorithm, are both
represented nodes which have been visited (high-degree nodes) and nodes which
have just been discovered, as neighbors of visited ones (low-degree nodes). One
important aspect of our experimentation has been to verify this hypothesis, in order
to highlight which properties of a partial graph obtained using the BFS sampling are
preserved, and which are biased. To do so, we had to acquire a comparable sample
which is certainly unbiased by construction (see further).

Description of the Breadth-First-Search Crawler

The BFS sampling methodology is implemented as one of the possible visiting
algorithms in our Facebook crawler, described before. While using this algorithm,
the crawler, for first, extracts the friend list of the “seed node,” which is represented
by the user actually logged on to the Facebook platform. The user-IDs of contacts
in its friend-list are stored in a FIFO queue. Then, the friend lists of these users
are visited, and so on. In our experimentation, the process continued until two
termination criteria have been met: (1) at least the third sublevel of friendship was
completely covered; (2) the mining process exceeded 240 h of running time. As
discussed before, the time constraint is adopted in order to observe a short mining
interval; thus the temporal evolution of the network is minimal (in the order of 2%)
and can be ignored. The obtained graph is a partial reconstruction of the Facebook
network structure, and its dimension is used as a yardstick for configuring the
“Uniform” sampling (see further).

Characteristics of the Breadth-First-Search Dataset

This crawler has been executed during the first part of August 2010. The acquired
sample covers about 12 million friendship connections among about 8 million users.
Among these users, we performed the complete visit of about 63.4 thousands of
them, thus resulting in an average degree d D 2�jEj

jVvj ' 396:4, considering V as the
number of visited users.
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Table 12.2 BFS dataset description (crawling period: 08/2001 to 10/2010)

No. of visited users No. of discovered neighbors No. of edges

63.4K 8.21M 12.58M

Avg. deg. Bigg. eigenval. Eff. diam. Avg. clust. coef. Coverage Density

396.8 68.93 8.75 0.0789 98.98% 0.626%

The overall mean degree, considering V as the number of total nodes on the
graph (visited users C discovered neighbors), is o D 2�jEj

jVt j ' 3:064. The expected

density of the graph is � D 2�jEj
jVvj�.jVv j�1/

' 0:006259 ' 0:626%, considering V
as the number of visited nodes. We can combine the previous equations obtaining
� D d

jVvj�1
. It means that the expected density of a graph is the average proportion

of edges incident with nodes in the graph.
In our case, the value ı D o

d
D jVvj

jVt j ' 0:007721 ' 0:772%, which here we
introduce, represents the effective density of the obtained graph.

The distance among the effective and the expected density of the graph, which
here we introduce, is computed as @ D 100 � ��100

ı
' 18:94%.

This result means that the obtained graph is slightly more connected than
expected, w.r.t. the number of unique users it contains. This consideration is also
compatible with hypothesis advanced in [59]. The effective diameter of this (partial)
graph is 8.75, which is compliant with the “six degrees of separation” theory
[10, 68, 72, 88].

The coverage of the graph is almost complete (99.98%). The small amount of
disconnected nodes can be intuitively adducted due to some collisions caused by the
hash function exploited to de-duplicate and anonymize user-IDs adopted during the
data cleaning step (see section “Data Preparation”). Some interesting considerations
hold for the obtained clustering coefficient result. It lies in the lower part of the
interval [0.05, 0.18] reported by [42] and, similarly, [0.05, 0.35] by [92], using
the same sampling methodology. The characteristics of the collected sample are
summarized in Table 12.2.

Uniform Sampling

To acquire a comparable sample, unbiased for construction, we exploited a rejection
sampling methodology. This technique has been applied to Facebook in [42],
where the authors proved its correctness. Its efficiency relies on the following
assumptions:

1. It is possible to generate uniform sampling values for the domain of interest.
2. These values are not sparse w.r.t. the dimension of the domain.
3. It is possible to sample these values from the domain.
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In Facebook, each user is identified by a 32-bit number user-ID. Considering that
user-IDs lie in the interval [0, 232 � 1], the highest possible number of assignable
user-IDs using this system is H ' 4:295e9.

The space for names is currently filling up since the actual number of assigned
user-IDs, R ' 5:4e8 roughly equals to the 540 million of currently subscribed
users4;5, the two domains are comparable and the rejection sampling is viable.
We generated an arbitrary number of random 32-bit user-IDs, querying Facebook
for their existence (and, eventually, obtaining their friend lists). That sampling
methodology shows two advantages: (1) we can statistically estimate the probability
R
H

' 12:5% of getting an existing user and (2) we can generate an arbitrary number
of user-IDs in order to acquire a sample of the desired dimension. Moreover, the
distribution of user-IDs is completely independent w.r.t. the graph structure.

Description of the “Uniform” Crawler

The “Uniform” sampling is another algorithm implemented in the Facebook crawler
we developed. Differently w.r.t. the BFS sampler, if adopting this algorithm, it is
possible to parallelize the process of extraction. This is because user-IDs to be
requested can be stored in different “queues.” We designed the uniform sampling
task starting from these assumptions: (1) the number of subscribed users is 229 '
5:368e8; (2) this value is comparable with the highest possible assignable number
of user-IDs, 232 ' 4:295e9, and (3) we can statistically assert that the possibility of
querying Facebook for an existing user-ID is 229

232 D 1
8

.12:5%/. For this purpose, we
generated eight different queues, each containing 216 ' 65:5K Š 63:4K random
user-IDs (the number of visited users of the BFS sample), used to feed eight parallel
crawlers.

Characteristics of the “Uniform” Dataset

The uniform sampling process has been executed during the second part of August
2010. The crawler collected a sample which contains almost eight million friendship
connections among a similar number of users. The acquired amount of nodes differs
from the expected number due to the privacy policy adopted by those users who
prevent their friend-lists being visited. The privacy policy aspect is discussed in
section “Privacy Settings.”

The total number of visited users has been about 48.1 thousand, thus resulting in
an average degree of d D 2�jEj

jVvj ' 326:0, considering V as the number of visited

users. Same assumptions, the expected density of the graph is � D 2�jEj
jVvj�.jVvj�1/

'
0:006777 ' 0:678%.

4As of August 2010, http://www.facebook.com/press/info.php?statistics
5http://www.google.com/adplanner/static/top1000/

http://www.facebook.com/press/info.php?statistics
http://www.google.com/adplanner/static/top1000/
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If we consider V as the number of total nodes (visited users C discovered
neighbors), the overall mean degree is o D 2�jEj

jVt j ' 2:025. The effective density of

the graph, previously introduced, is ı D jVvj
jVt j ' 0:006214 ' 0:621%. The distance

among the effective and the expected density of the graph, is @ D 100 � ��100
ı

'
�9:06%. This can be intuitively interpreted as a slight lack of connection of this
sample w.r.t. the theoretical expectation.

Some considerations hold, also comparing against the BFS sample: the average
degree is slightly less (326.0 vs. 396.8), but the effective diameter is almost
the double (16.32 vs. 8.75). We justify this characteristic considering that the sample
could be still too small and disconnected to perfectly reflect the structure of the
network. Our hypothesis is also supported by the dimension of the largest connected
component, which does not contain the 5% of the sample. Finally, the clustering
coefficient, less than the BFS sample (0.0471 vs. 0.0789), is still comparable w.r.t.
previously considered studies [42, 92].

Data Preparation

During the data mining process, it could happen to store redundant information. In
particular, while extracting friend-lists, a crawler could save multiple instances of
the same edge (i.e., a parallel edge), if both the connected users are visited; this
is because the graph is undirected. We adopted a hashing-based algorithm which
cleans data in O.N / time, removing duplicate edges. Another step, during the
data preparation, is the anonymization: user-IDs are “encrypted” adopting a 48-bit
hybrid rotative and additive hash function [77], to obtain anonymized datasets. The
final touch was to verify the integrity and the congruency of data. We found that
the usage of the hashing function caused occasional collisions (0.0002%). Finally,
some datasets of small sub-graphs (e.g., ego-networks) have been postprocessed and
stored using the GraphML format [21].

Network Analysis Aspects

During the last years, important achievements have been reached in understanding
the structural properties of several complex real networks. The availability of
large-scale empirical data, on the one hand, and the advances in computational
resources, on the other, made it possible to discover and understand interesting
statistical properties commonly shared among different real-world social, biological
and technological networks. Among others, some important examples are: the
World Wide web [6], Internet [32], metabolic networks [54], scientific collaboration
networks [11,70], citation networks [81], etc. Indeed, during the last years, even the
social networks are strongly imposing themselves as complex networks described
by very specific models and properties. For example, some studies [8,68,88] proved
the existence of the so-called “small-world” property in complex social networks.
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Others [2, 76] assert that the so-called “scale-free” complex networks reflect a
“power-law” distribution as model for describing the behavior of node degrees. We
can conclude that the topology of the networks usually provides useful information
about the dynamics of the network entities and the interaction among them.

In addition to contributing to the advances in graph theory, the study of complex
networks led to important results also in some specific contexts, such as the social
sciences. A branch of the network analysis applied to social sciences is the Social
Network Analysis (SNA). From a different perspective w.r.t. the analysis of complex
networks, which mainly aims to analyze structural properties of networks, the
SNA focuses on studying the nature of relationships among entities of the network
and, in the case of social networks, investigating the motivational aspect of these
connections.

In this section, we will briefly describe properties and models characterizing
the structure of complex networks (see sections “Definitions” and “Networks
Models”); then we will focus on defining measures and metrics property of SNA
(see section “Social Network Analysis”) and, while concluding, we will consider
some interesting aspects regarding the visualization of related graphs (see section
“Visualizing Social Networks”).

Definitions

In this section, we describe some of the common structural properties which are
usually observed in several complex networks and define the way they are measured.
Then, we describe concepts about the mathematical modeling of networks, includ-
ing random graph models and their generalizations, the “small-world” model and its
variations, and models of growth and evolution of graphs, including the preferential
attachment models.

Shortest Path Lengths, Diameter, and Betweenness

Let G D .V; E/ be a graph representing a network; the distance dij between two
nodes, labeled i and j , respectively, is defined as the number of edges along the
shortest path connecting them. The diameter D of the network represented by G,
therefore, is defined to be the maximal distance among all distances between any
pair of nodes in the network.

A common measure of distance between two nodes of the graph G, is given by
the average shortest path length [90, 91] (also called characteristic path length),
defined as the mean value of the geodesic distance (i.e., the shortest path) between
the all-pairs node of the graph (a.k.a. the “all-pairs-shortest-path problem” [84]):

` D 1

N.N � 1/

X

i¤j

dij (12.3)
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The main problem adopting this definition is that ` diverges if the graph contains
disconnected components. A possible solution to this issue is to limit the domain
of the summation in Eq. 12.3 only to the pairs of nodes belonging to the largest
connected component of the graph.

Several metrics have been defined to compute the centrality of a node within
a graph, such as the degree, closeness, and the betweenness centrality. The latter
one has been originally introduced to quantitatively evaluate the importance of an
individual in a network [60,89] and is recognized to be the most appropriate measure
to reflect the concept of centrality in a network. The betweenness centrality of a
node was defined by Freeman [36,37] as in Eq. 12.2. Correlations “betweenness-vs.-
betweenness” and “betweenness-vs.-degree” have been investigated, respectively,
by authors of Refs. [43] and [26, 44, 49]. In section “Betweenness Centrality in
Facebook,” we will focus on analyzing this metric calculated on the Facebook graph,
for reasons further explained.

Clustering

In several networks, it is shown that if a node i is connected to a node j , which in its
turn is connected to a node k, then there is a heightened probability that node i will
be also connected to node k. From a social network perspective, a friend of your
friend is likely also to be your friend. In terms of network topology, transitivity
means the presence of a heightened number of triangles in the network, which
constitute sets of three nodes connected to each other [71]. The global clustering
coefficient is defined by

Cg D 3 � no: of triangles in G

no: of connected triples
(12.4)

where a connected triple represents a pair of nodes connected to another node. Cg

is the mean probability that two persons who have a common friend are also friends
together. An alternative definition of clustering coefficient C has been provided by
Watts and Strogatz [91]. During our experimentation, we investigated the clustering
effect on the Facebook network (see section “Diameter and Clustering Coefficient”).

The “Small-World” Property

It is well known in literature that most large-scale networks, despite their huge size,
show a common property: there exists a relatively short path which connects any
pair of nodes within the network. This characteristic, the so-called small-world
property, is theoretically supported by the average shortest path length, defined
by Eq. 12.3, and it scales proportionally to the logarithm of the dimension of the
network. The study of this phenomenon is rooted in social sciences [68, 88] and
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is strictly interconnected with the notion of diameter we introduced before. The
Facebook social network reflects the “small-world” property as discussed in section
“Diameter and Clustering Coefficient.”

Scale-Free Degree Distributions

On the one hand, in a random graph (see further), the node degree (i.e., the number
of edges the node has) is characterized by a distribution function P.k/ which
defines the probability that a randomly chosen node has exactly k edges. Because
the distribution of edges in a random graph is aleatory, most of the nodes have
approximately the same node degree, similar to the mean degree hki of the network.
Thus, the degree distribution of a random graph is well described by a Poisson
distribution law, with a peak in P.hki/. On the other hand, recent empirical results
show that in most of the real-world networks the degree distribution significantly
differs w.r.t. a Poisson distribution. In particular, for several large-scale networks,
such as the World Wide web [6], Internet [32], metabolic networks [54], etc., the
degree distribution follows a power law:

P.k/ � k�� (12.5)

This power-law distribution falls off more gradually than an exponential one,
allowing for a few nodes of very large degree to exist. Since these power laws are
free of any characteristic scale, such a network with a power-law degree distribution
is called a scale-free network [9]. We proved that Facebook is a scale-free network
well described by a power-law degree distribution, as discussed in section “Degree
Distribution.”

Network Models

Concepts such as the short path length, the clustering, and the scale-free degree
distribution have been recently applied to rigorously model the networks. Three
main modeling paradigms exist: (1) random graphs, (2) “small-world” networks,
and (3) power-law networks. Random graphs represent an evolution of the Erdős-
Rényi model, and are widely used in several empirical studies, because of the
ease of adoption. After the discovery of the clustering property, a new class of
models, namely, “small-world” networks, has been introduced. Similarly, the power-
law degree distribution definition led to the modeling of the homonym networks,
which are adopted to describe scale-free behaviors, focusing on the dynamics of
the network in order to explain phenomena such as the power-law tails and other
non-Poisson degree distribution, empirically shown by real-world networks.
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The Erdős-Rényi Model

Erdős and Rényi [30, 31] proposed one of the first models of network, the random
graph. They defined two models: the simple one consists of a graph containing n

vertices connected randomly. The commonly adopted model, indeed, is defined as
a graph Gn;p in which each possible edge between two vertices may be included
in the graph with the probability p (and may not be included with the probability
(1 � p)).

Although random graphs have been widely adopted because their properties ease
the work of modeling networks (e.g., random graphs have a small diameter), they
do not properly reflect the structure of real-world large-scale networks, mainly for
two reasons: (1) the degree distribution of random graphs follows a Poisson law,
which substantially differs from the power-law distribution shown by empirical data;
(2) they do not reflect the clustering phenomenon, considering all the nodes of the
network with the same “weight,” and reducing, de facto, the network to a giant
cluster.

The Watts-Strogatz Model

The real-world social networks are well connected and have a short average
path length like random graphs, but they also have exceptionally large clustering
coefficient, which is not reflected by the Erdős-Rényi model or by other random
graph models. In [91], Watts and Strogatz proposed a one-parameter model that
interpolates between an ordered finite dimensional lattice and a random graph.
Starting from a ring lattice with n vertices and k edges per vertex, each edge is
rewired at random with probability p [91].

The model has been widely studied since the details have been published. Its
role is important in the study of the small-world theory. Some relevant theories,
such as Kleinberg’s work [56, 57], are based on this model and its variants. The
disadvantage of the model, however, is that it is not able to capture the power-law
degree distribution as presented in most real-world social networks.

The Barabási-Albert Model

The two previously discussed theories observe properties of real-world networks
and attempt to create models that incorporate those characteristics. However, they
do not help in understanding the origin of social networks and how those properties
evolve.

The Barabási-Albert model suggests that two main ingredients of self-
organization of a network in a scale-free structure are growth and preferential
attachment. These pinpoint to the facts that most of the networks continuously
grow by the addition of new nodes which are preferentially attached to existing
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nodes with large numbers of connections (again, “rich gets richer”). The generation
scheme of a Barabási-Albert scale-free model is as follows: (1) Growth: let pk

be the fraction of nodes in the undirected network of size n with degree k, so
that

P
k pk D 1 and therefore the mean degree m of the network is 1

2

P
k kpk .

Starting with a small number of nodes, at each time step, we add a new node with
m edges linked to nodes already part of the system; (2) preferential attachment:
the probability

Q
i that a new node will be connected to the node i (one of the m

already existing nodes) depends on the degree ki of the node i , in such a way thatQ
i D ki

P
j kj .

Models based on preferential attachment operates in the following way. Nodes
are added one at a time. When a new node u has to be added to the network, it
creates m edges (m is a parameter and it is constant for all nodes). The edges are not
placed uniformly at random but preferentially, i.e., probability that a new edge of u
is placed to a node v of degree d.v/ is proportional to its degree, pu.v/ / d.v/. This
simple behavior leads to power-law degree tails with exponent � D 3. Moreover,
it also leads to low diameters. While the model captures the power-law tail of the
degree distribution, it has other properties that may or may not agree with empirical
results in real networks. Recent analytical research on average path length indicates
that ` � ln.N /=lnln.N /. Thus the model has much shorter l w.r.t. a random graph.
The clustering coefficient decreases with the network size, following approximately
a power-law C � N �0:75. Though greater than those of random graphs, it depends
on network size, which is not true for real-world social networks.

Social Network Analysis

In the previous section, we discussed about the network as a complex system: in
particular, complex network theory, by its graph theoretical approach, does not
explain the network by its elements’ behavior, but it deals with a whole organism
that evolves by means of its single components. In this section, instead, we approach
the study of that components: SNA deals with the study of the actors involved in a
network. It is an approach based on the analysis of the behavior of single entities
which are part of the network and govern its evolution. The single components have
the possibility of choosing their own connections without considering the network
as a whole structure but only w.r.t. individual characteristics. Indeed, almost the
totality of social network models deals with the external information on the actors.
Social network analysts often use these additional information to explain network
formation. This is the principal difference between social network analysis and
complex network theory. In the latter, we often disregard the additional information
on the single nodes because the attention is pointed out toward a more structural
method, namely, a systemic approach.
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Metrics

Metrics allow analysts to systematically dissect the social world, creating a basis on
which to compare networks, track changes over the time, and determine the relative
position of individuals and clusters within the network [51].

One of the primary uses of graph theory in social network analysis is the
identification of the most important actors in a social network [89]. The degree
centrality is a measure of the degree of an actor in a network. An actor with a high-
degree centrality is “where the action is” in the network. Thus, this measure focuses
on the most visible actors in the network. This actor can be recognized by others as
a major channel of relational information. In contrast, actors with low degrees are
peripheral in the network.

A second view of centrality is based on closeness or distance. This measure
focuses on how close an actor is to all the other actors in the network. This idea
of centrality based on closeness is inversely related to the distance. As a node
grows farther apart in distance from other nodes, its centrality will decrease, since
there will be more lines in the geodesics linking that node to the rest [33]. Finally,
interactions between two non-adjacent actors might depend on the other actors,
especially those lying on the paths between them. These other actors potentially
might have some control over the interactions between the two nonadjacent actors.
The important idea here is that an actor is central if it lies between other actors on
their geodesics. This implies that to have a large betweenness centrality [36], the
actor must be between many of the actors via their geodesics [91]. Although this
centrality has gained popularity because of its generality, this index assumes that all
geodesics are equally likely when estimating the critical probability that an actor
fall on a particular geodesic. It also ignores the fact that if some actors on the
geodesics have large degrees, then the geodesics containing these expansive actors
are more likely to be used as shortest paths than other geodesics. Also it would
be more realistic to consider betweenness counts which focus on paths other than
geodesics. Information centrality generalizes the notion of betweenness centrality,
so all paths between actors, with weights depending on their lengths, are considered
when calculating the betweenness counts.

Visualizing Social Networks

One of the key elements that characterize modern social network analysis is the
visual representation. Looking at a network graph may provide an overview of the
structure of the network, calling out cliques, communities, and key participants.
Drawings of relational structures like social networks are only useful if they
“effectively convey information to the people that use them” [19, 28, 29]. Network
visualization is often as frustrating as appealing. Network graphs can rapidly get too
dense and large to make out any meaningful patterns. Many obstacles like vertex
occlusions and edge crossings make creating well-organized and readable network
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Fig. 12.3 N-Body approach with LogAnalysis

graphs challenging. There is an upper limit on the number of vertices and edges
that can be displayed in a bounded set of pixels; typically, only a few hundred or
thousand vertices can be meaningfully and distinctly represented on average-sized
computer screens.

A key reference for better-quality network visualization is the so-called Netviz
Nirvana guidelines [79]. Several graph layout algorithms can be used, including
variants of the “spring embedder” such as the Harel-Koren [52] fast multi-scale
method, the popular Fruchterman-Reingold [38] force-directed algorithm, and
more scalable gravitational N-Body approaches (see Figs. 12.3 and 12.4), such as
those implemented in LogAnalysis [23] and NodeXL [51]. The results of applying
these algorithms vary depending on the size and topology of the network.

LogAnalysis presents social networks using a familiar node-link representation,
where nodes represent members of the system and links represent the articulated
“friendship” links between them. It integrates statistics proposed by Perer and
Shneiderman [78]: overall network metrics (i.e., number of nodes, number of
edges, density, diameter), node rankings (i.e., degree, betweenness and closeness
centrality), edge rankings (i.e., weight, betweenness centrality), edge rankings
in pairs, and cohesive subgroups. Network members are presented using both
their self-provided name, ID (e.g., the Facebook user-ID) and, if available, a
representative photograph (e.g., the Facebook profile picture). The networks are
presented as egocentric networks. Users can expand the display by selecting nodes
to make visible others’ friends as well. Analysts can also explore a network by
focusing on one node, the node’s neighbors, and the ties among them and can
interactively increase the depth of the neighborhood by dragging a slider bar.
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Fig. 12.4 Betweenness centrality and clustering effect in an ego-network of 25K nodes

Betweenness Centrality in Facebook

The analysis of large ego-networks led us to another interesting consideration on
the behavior of the betweenness centrality (BC); it goes as follows. Clearly, the
more a node is central and important, the higher its BC. One could suppose that this
measure is directly interconnected with the degree of a node, or with other measures
of centrality (e.g., the Pagerank). In Fig. 12.4, we show the behavior of this metric
evaluated on an ego-network of about 25,000 of nodes. The following consideration
holds: the node which covers the most important position in this network (vertex
“8478,” in red) does not show “special” properties (e.g., its degree and its Pagerank
are lower than most of the other nodes). However, it appears in more than the double
of shortest paths w.r.t. the other nodes of the network. Similar considerations hold
for other nodes (vertices “24221,” “5851,” “9453,” in yellow, and “11661,” “24853,”
in green) in this particular ranking. Intuitively, nodes with high BC represent a
potential efficient way of connection among peripheral nodes.

It is known that the BC distribution follows a power law p.g/ � g�� for
scale-free networks [43]. Similarly to the degree exponent case, in general, the BC
exponents increase for node and link sampling and decrease for snowball sampling
as the sampling fraction gets lower. The correlation between degree and BC of
nodes [12], shown in Fig. 12.10 (section “Connected Components”), could explain
the same direction of changes of degree and BC exponents.

We can conclude that the study of the betweenness centrality in Facebook is
fundamental for all those aspects related to discovering central nodes of the network,
and that BC is a numerical property for applications (e.g., for marketing purposes,
broadcasting news, etc.).
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Experimental Work

We describe some interesting experimental results as follows. To compute the
community profile of a network and its node centrality measures, such as degree
and betweenness, we have adopted the Stanford Network Analysis Platform (SNAP)
[62], a general-purpose network analysis library.

Privacy Settings

We investigated the adoption of restrictive privacy policies by users: our statistical
expectation using the “Uniform” crawler was to acquire 8 � 216

23 ' 65:5K users.
Instead, the actual number of collected users was 48.1K. Because of privacy settings
chosen by users, the discrepancy between the expected number of acquired users
and the actual number was about 26.6%. In other words, only a quarter of Facebook
users adopt privacy policies which prevent other users (except for those in their
friendship network) from visiting their friend-list.

Degree Distribution

A first description of the network topology of the Facebook friendship graph can
be obtained from the degree distribution. According to Eq. 12.5, a relatively small
number of nodes exhibit a very large number of links. An alternative approach
involves the Complementary Cumulative Distribution Function (CCDF)

}.k/ D
Z 1

k

P.k0/dk0 � k�˛ � k�.��1/ (12.6)

When calculated for a complete graph, CCDF shows up as a straight line in a
log-log plot, while the exponent of the power-law distribution only varies the height
(not the shape) of the curve.

In Fig. 12.5 is plotted the degree distribution, as obtained from the BFS and
“Uniform” sampling techniques. The limitations due to the dimensions of the cache
which contains the friend-lists, upper bounded to 400, are evident. The BFS sample
introduces an overestimate of the degree distribution in the left and the right part of
the curves. The CCDF is shown, for the same sample, in Fig. 12.6.

Diameter and Clustering Coefficient

It is well known that most real-world graphs exhibit a relatively small diameter. A
graph has diameter D if every pair of nodes can be connected by a path of length



316 S. Catanese et al.

Fig. 12.5 Degree distribution

Fig. 12.6 CCDF degree distribution

of at most D edges. The diameter D may be affected by outliers (again, the small-
world phenomenon). A robust measure of the pairwise distances between nodes in a
graph is the effective diameter, which is the minimum number of links (steps/hops)
within which some fraction (or quantile q, say q D 0:9) of all connected pairs of
nodes can reach each other. The effective diameter has been found to be small for
large real-world graphs, like Internet and the web, real-life and OSNs [7, 64, 68].

The hop-plot package extends the notion of diameter by plotting the number of
reachable pairs g.h/ within h hops, as a function of the number of hops h [76].
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Fig. 12.7 Hops and diameter

It gives us a sense of how quickly the neighborhoods of nodes expand with the
number of hops. In Fig. 12.7, the number of hops necessary to connect any pair of
nodes is plotted as a function of the number of pairs of nodes. As a consequence
of the more “compact” structure of the graph, the BFS sample shows a faster
convergence to the asymptotic value listed in Table 12.2.

The clustering coefficient of a node is the ratio of the number of existing links
over the number of possible links between its neighbors.

Given a network G D .V; E/, a clustering coefficient, Ci , of node i 2 V is:

Ci D 2jf.v; w/j.i; v/; .i; w/; .v; w/ 2 Egj=ki.ki � 1/ (12.7)

where ki is the degree of node i . It can be interpreted as the probability that any
two nodes that share a common neighbor have a link between them. The clustering
coefficient of a node represents how well connected its neighbors are. For any node
in a tightly connected mesh network, the clustering coefficient is 1. The clustering
coefficient of a network is the mean clustering coefficient of all nodes.

Often, it is insightful to examine not only the mean clustering coefficient (see
section “Clustering”), but its distribution. In Fig. 12.4, it is possible to clearly
identify the clustering effect of a Facebook subgraph, visually enhanced by applying
several iterations of the Fruchterman-Reingold algorithm [38]. Figure 12.8 shows
the average clustering coefficient plotted as a function of the node degree for the
two sampling techniques. As a consequence of the more systematic approach of
extraction, the distribution of the clustering coefficient of the BFS sample shows a
smooth behavior.
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Fig. 12.8 Clustering coefficient

Table 12.3 “Uniform” dataset description (crawling period: 08/2011 to 20/2010)

No. of visited users No. of discovered neighbors No. of edges

48.1K 7.69M 7.84M

Avg. deg. Bigg. eigenval. Eff. diam. Avg. clust. coef. Coverage Density

326.0 23.63 16.32 0.0471 94.96% 0.678 %

The following considerations hold for the diameter and hops: the BFS sample
may be affected by the “wavefront expansion” behavior of the visiting algorithm,
while the “Uniform” sample may still be too small to represent a faithful estimate
of the diameter (this hypothesis is supported by the dimension of the largest
connected component which does not cover the whole graph, as discussed in the
next paragraph). Different conclusions can be derived for the clustering coefficient
property. It is important to observe that the average values of the two samples
fluctuate in the same interval reported by recent similar studies on OSNs (i.e., [0.05,
0.18] by Wilson et al. [92], [0.05, 0.35] by Gjoka et al. [42]), thus confirming that
this property is preserved by both the adopted sampling techniques.

Connected Components

A connected component is a maximal set of nodes where for each pair of nodes
there exists a path connecting them. Analogously, directed graphs show weakly and
strongly connected components.

As shown in Tables 12.2 and 12.3, the largest connected components cover the
99.98% of the BFS graph and the 94.96% of the “Uniform” graph. In Fig. 12.9,
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Fig. 12.9 Connected components

the scattered points in the left part of the plot have a different meaning for each
sampling techniques. In the “Uniform” case, the sampling picked up disconnected
nodes. In the BFS case, disconnected nodes are meaningless, as they are due to
some collisions of the hashing function during the de-duplication phase of the data-
cleaning step. This interpretation is supported by their small number (29 collisions
over 12.58 millions of hashed edges) involving only 0.02% of the total edges.
However, the quality of the sample is not affected.

These conclusions are confirmed in Fig. 12.10, where the betweenness centrality
is plotted as a function of the degree. In the right part of the plot, the betweenness
centrality shows a linearly proportional behavior w.r.t. the degree. In our opinion,
this implies a high degree of connectedness of the sample, since a high value of
betweenness centrality is related to a high value of the degree of the nodes.

Conclusions

The success of OSNs and the growth of their user base is of great interest to both
social and computer science. Extraction and analysis of OSN data describing social
networks pose both a technological challenge and an interpretation challenge. We
have presented here our long-term research project on social network analysis and
our two implemented systems: the ad hoc Facebook crawler and the LogAnalysis
tool for analysis and visualization.

The ad hoc Facebook crawler has been developed to comply with the increasingly
strict terms of Facebook end-user license, i.e., to create large, fully anonymous
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Fig. 12.10 Betweenness centrality vs degree (on an ego-network of 25K nodes)

samples that can be employed for scientific purposes. Two different sampling
techniques have been implemented in order to explore the graph of friendships of
Facebook, since the BFS visiting algorithm is known to introduce a bias in case of
an incomplete visit.

Analysis of such large samples was tackled using concepts and algorithms typical
of the graph theory, namely, users were represented by nodes of a graph and
relations among users were represented by edges. Our LogAnalysis tools support
OSN analysis and give a graphical visualization of key graph theory and social net-
work analysis concepts: degree distribution, diameter, centrality metrics, clustering
coefficient computation, and eigenvalues distribution. Future developments involve
the implementation of different sampling techniques (e.g., Monte Carlo Random
Walks) in order to speed up the data extraction process and the evaluation of network
metrics.
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