The role of strong and weak ties in Facebook: a community structure perspective

Emilio Ferrara 1,2
with P. De Meo 2, G. Fiumara 2, A. Provetti 2

1 Indiana University Bloomington – School of Informatics and Computing – CnetS – NaN
2 Department of Physics, Informatics Section, University of Messina (IT)
Outline

1. Introduction
 - Strength of weak ties theory

2. Sampling and Analysis from Facebook
 - Sampling and building a Facebook dataset
 - Facebook network analysis

3. Strength of weak ties theory evaluation
 - Nature of ties in Facebook

4. Conclusion
 - Conclusions, open problems and future work
1. Introduction
 - Strength of weak ties theory

2. Sampling and Analysis from Facebook
 - Sampling and building a Facebook dataset
 - Facebook network analysis

3. Strength of weak ties theory evaluation
 - Nature of ties in Facebook

4. Conclusion
 - Conclusions, open problems and future work
In 1973, Mark Granovetter proposed the **strength of weak ties** theory: human relationships (acquaintance, loose friendship) that are *less binding* than family and close friendship but yield *better access to information and opportunities.*

He formalized the concept of **tie strength** in human relations as a (probably a linear) combination of **amount of time**, emotional intensity, intimacy (mutual confiding) and the reciprocal services which characterize the tie.

He also defined the most ideal context of assessment of this theory:

Ties are assumed to be **positive and symmetric**. Discussion of operational measures and weights is postponed to future empirical studies.

Strength of weak ties - operationalization

Requirement: a Social Network representable by means of mutual unweighted friendship relations. Facebook is probably the best-known example of such a type of friendship connection.

[Strict] **Weak ties** act as *bridges* among communities otherwise disconnected.

[Relaxed] **Weak ties** act as *shortcut bridges* shortening distances among nodes belonging to different communities.

We define, in our context of Facebook:

- **Weak Ties** Those edges that occur among nodes belonging to different communities.
- **Strong Ties** The vice-versa, those edges occurring among nodes in the same community.
Strength of weak ties - ideas

Scope To investigate the **nature of ties** in Facebook to prove their **role** in the Social Networks.

We believe this an important task, since tie strength is proven to affect:

- **information diffusion** [Zhao] 2
- diffusion of **opinions and social influence** [Grabowicz] 3
- identification of **leaders** in the network [Centola] 4

Plan To assess the **strength of weak ties theory** in Facebook we will:

1. Partition the network (i.e., community detection)
2. Classify links (weak ties - strong ties)
3. Study their features

2Weak ties: A subtle role in the information diffusion of OSNs. 2010

3Social features of online networks: The strength of intermediary ties in online social media, PLoS ONE 2012.

4The spread of behavior in an online social network experiment, Science 2010.
Actors, ties and communities in Facebook in a shot!

The role of strong and weak ties in Facebook
1. Introduction
 - Strength of weak ties theory

2. Sampling and Analysis from Facebook
 - Sampling and building a Facebook dataset
 - Facebook network analysis

3. Strength of weak ties theory evaluation
 - Nature of ties in Facebook

4. Conclusion
 - Conclusions, open problems and future work
Sampling from Facebook: MHRW vs. Uniform sampling

Metropolis-Hastings Random Walk features:

- Biased towards low-degree nodes
- Transition probability given by

\[P_{u,v}^{MHRW} = \frac{\min(1, k_v / k_w)}{k_v} \text{ if } w \text{ neighbor of } v \]

\[P_{u,v}^{MHRW} = 1 - \sum_{y \neq v} P_{u,y}^{MHRW} \text{ if } u = v \]

Uniform (rejection-based) sampling: a list of random nodes to be visited is generated.

- Independent w.r.t. the structural distribution of friendship ties
- Produces unbiased results

\(^5\)By Gjoka et al. Walking in Facebook: A Case Study of Unbiased Sampling of OSNs, 2010
MHRW & Uniform dataset (acquired by Gjoka6 during August 2009)

<table>
<thead>
<tr>
<th></th>
<th>No. nodes</th>
<th>No. edges</th>
<th>Avg. deg.</th>
<th>Clust. coeff.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MHRW</td>
<td>957K</td>
<td>58.4M</td>
<td>94.1</td>
<td>0.05</td>
</tr>
<tr>
<td>Uniform</td>
<td>984K</td>
<td>72.2M</td>
<td>95.2</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Similar degree distribution showed by MHRW and Uniform samples

Do MHRW and Uniform complement each other? Can be merged?

6Walking in Facebook: A Case Study of Unbiased Sampling of OSNs, 2010
Is it safe to merge the two networks? i.e., does merging introduce bias? Gjoka et. al\(^7\) proved that MHRW preserves statistical features and network structure. E.g., degree distributions of MHRW and Uniform networks overlap

\(^7\)Walking in Facebook: A Case Study of Unbiased Sampling of OSNs, 2010
The network exhibits two types of nodes:

1. Nodes visited during the sampling process;
2. Nodes only *seen* by the sampling as neighbors of other visited ones.

Consideration

To ensure reflecting the community structure, we retain only those nodes completely visited, and not only discovered by the sampling process.

In the pruned network we:

- Deleted all nodes which have only been *discovered* (i.e., the *frontier*),
- Deleted all edges pointing to frontier nodes.

<table>
<thead>
<tr>
<th></th>
<th>No. nodes</th>
<th>No. edges</th>
<th>Avg. deg.</th>
<th>Clust. coeff.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SocialGraph</td>
<td>613K</td>
<td>2.04M</td>
<td>22.74</td>
<td>0.18</td>
</tr>
</tbody>
</table>
We collected geographical information about users in the sample to further study influence of physical distances on tie strength

- Geocoding Regional networks identifiers
- Yahoo PlaceFinder API
Outline

1. Introduction
 - Strength of weak ties theory

2. Sampling and Analysis from Facebook
 - Sampling and building a Facebook dataset
 - Facebook network analysis

3. Strength of weak ties theory evaluation
 - Nature of ties in Facebook

4. Conclusion
 - Conclusions, open problems and future work
In OSNs degree distribution usually follows a **power law** $P(k) \sim k^{-\gamma}$, with $\gamma \leq 3$.

There exists a small number of nodes with high degree (so-called **hubs**) and a large number of nodes with few connections (**tail of the power law**).

We plot the **Complementary Cumulative Distribution Function (CCDF)** $\varphi(k) = \int_k^\infty P(k') dk' \sim k^{-\gamma} \sim k^{-(\gamma-1)}$ in a **log-log scale**.

In our case we obtain $\gamma = 2.45$ (MEL fitting, p-value < 0.001).
Facebook community structure

Community Communities formation in SNs is a natural process since individuals aggregate together in groups that represent friendship, kinship, working relations etc.

Definition The so-called community structure is defined by an increased density of connections among nodes belonging to a given community with respect to nodes outside the community.

Formulation Commonly, we define the problem of finding a reasonable partitioning $V = (V_1 \cup V_2 \cup \cdots \cup V_n)$ of disjoint subset of nodes of a social graph $G = (V, E)$.

Algorithms A famous paradigm proposed by [Newman]8, maximizes a function called network modularity $Q = \sum_{s=1}^{m} \left[\frac{l_s}{|E|} - \left(\frac{d_s}{2|E|} \right)^2 \right]$ where l_s is the number of edges belonging to the s-th community and d_s is the sum of the degree of these nodes.

Remark High values of $Q \in [-0.5, 1]$ imply a clear emergence of the community structure.

Different modularity maximization strategies exist: we adopt the well-known *Louvain method* [Blondel] \(^9\)

Modularity based methods may suffer from a resolution limit [Fortunato] \(^10\), i.e. the inability of finding communities smaller than \(\sqrt{E/2} \approx 1,000\) in our case

We describe the community size CCDF and overall statistics on clustering

No. communities: 196,665
Mix/Max/Avg. size: 1/1,471/≈ 9

\(^10\) Resolution limit in community detection. PNAS 2007
Facebook community structure: visualization
Outline

1. Introduction
 - Strength of weak ties theory

2. Sampling and Analysis from Facebook
 - Sampling and building a Facebook dataset
 - Facebook network analysis

3. Strength of weak ties theory evaluation
 - Nature of ties in Facebook

4. Conclusion
 - Conclusions, open problems and future work
Strength of weak ties - distribution

Strong & Weak Both distributions fit well to power laws $f(x) \propto x^{-\gamma}$ – with a decay the tail, possibly due to the sample size.

Offset There exists approximately an order of magnitude of difference between number of weak and strong ties per node. Which means: every 10 links, 9 are weak and 1 is strong.

Rich club This phenomenon is well-known in sociology and is called rich club. A proportion of 90%-10%, a variant of the famous 80-20 Pareto principle, often emerges in Social Networks.

![Graph showing distributions of strong and weak ties](image-url)
Strength of weak ties - tipping point

Remark According to previous experiments, the self-organization principle emerges: users aggregate in small communities highly interconnected among each other!

Tipping-point By plotting the CCDF of the probability distribution, it is possible to identify in $k \approx 5$ the tipping point from which the presence of weak ties quickly overcomes that of strong ties, making the latters less numerous in nodes with degree higher than k.

![Graph showing CCDF of weak and strong ties (k)]
Interlink The inter-community links (i.e., weak ties) mainly connect communities of small size among each other. According to the **strength of weak ties theory**, weak links occur to maintain the network proficiently connected.
Ties vs Size The probability distribution of weak ties with respect to the size of the communities follows a power law, according to the self-organization theory that explains the presence of small communities highly interconnected each other.
Strength of weak ties - discussion of results

On Facebook, most ties are weak (?)

- Only a small part of connections among individuals fall in the same community
- Do we establish friendship connections on Facebook with individuals which instead are loose friends or acquaintances?
- Do most of our friends on Facebook actually belong to different and/or far communities?

Dunbar number vs. divided attention

- Sociologists at Facebook recently assessed that on average male users actively interact with only 17 of their friends, women with 16 [Marlov] ¹¹
- Our finding tells that only 10% of connections are strong and most are weak in the Granovetter’s sense (low interaction)

Outline

1. Introduction
 - Strength of weak ties theory

2. Sampling and Analysis from Facebook
 - Sampling and building a Facebook dataset
 - Facebook network analysis

3. Strength of weak ties theory evaluation
 - Nature of ties in Facebook

4. Conclusion
 - Conclusions, open problems and future work
Conclusions, open problems and future work

Limits on Facebook:

- No access to frequency of interaction data (e.g., wall posts, chat)
- No access to the whole network, sampling hard/discouraged

Open issues in our approach:

- How to prove results are not only artifacts of community detection?
- Prove that results hold true with overlapping community detection

Future work:

- Assess role of geographical distance in tie strength
- Estimate tie strength according to an edge weight function
- Investigate symmetric vs asymmetric relations
Thanks! :-)

Questions?