
Chapter 1

Uncovering criminal behavior with
computational tools

Emilio Ferrara, Salvatore Catanese and Giacomo Fiumara

Abstract In this chapter we explore the opportunities brought in by advanced social
network analysis techniques to study criminal behaviors and dynamics in heteroge-
neous communication media, along multiple dimensions including the temporal and
spatial ones. To this aim, we present LogViewer, a Web framework we developed to
allow network analysts to study combinations of geo-embedded and time-varying
data sources like mobile phone networks and social graphs. We present some use-
cases inspired by real-world criminal investigations where we used LogViewer to
study criminal networks reconstructed from mobile phone and social interactions to
identify criminal behaviors and uncover illicit activities.

1.1 Introduction

The pervasive diffusion of technologically-mediated communication channels pushed
to unprecedented frontiers the ability of individuals to interconnect and exchange
information. Mobile phone networks, social networking and media platforms like
Facebook and Twitter, and over-IP messaging systems like Skype and WhatsUp,
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represent some examples of the multitude of communication media broadly adopted
in nowadays society. These phenomena generated lot of interest in the research com-
munity. Several aspects of socio-technical systems have been studied [63]: from
macroscopic characteristics, like network structure [42, 37, 22, 21], to network
dynamic, like information diffusion [54, 4, 47, 24], from microscopic behaviors,
like how individual address their attention [39, 66] and what topics they discuss
[18, 15], to social issues, like how people organize and mobilize using technol-
ogy [31, 16, 17, 62] and what effects technological media have at the societal level
[30, 43].

One aspect that has vast societal impact is the improper usage of such platforms.
Technologies have been long exploited for criminal activities: for example, vari-
ous studies showed how the Internet has been exploited for cybercrime, terror and
militancy purposes [1, 12, 34]. In terms of abuse, mobile communication networks
and social media have been mostly studied as vectors for the diffusion of computer
viruses and malware [38, 33]. On the other hand, the possibility that such communi-
cation channels can be exploited by criminals to organize and coordinate their illicit
activities in the physical world has been recently found very real [44, 45]. The ability
to detect criminal behavior across different communication media is of paramount
importance to avoid abuse and fight crime. For this reason, computational tools and
models have been recently proposed to study criminal behavior in online platforms
[69, 70, 71], social media [64], and mobile phone networks [23, 7]. Usually, such
models and techniques are limited to one or few specific use-cases. For example, we
recently proposed a tool called LogAnalysis that allows an investigator to reconstruct
and visualize networks from mobile phone call data [13].

Here we present LogViewer, a next-generation Web-based criminal network analy-
sis framework that yields advanced social network analysis functions, de facto ex-
tending LogAnalysis features to different types of networks, for example phone call
networks and social graphs. LogViewer allows to study each network from three
different angles: (i) static analysis, to investigate the role of nodes and edges, their
centrality, and the emerging communities representing potential criminal rings; (ii)
temporal analysis, to span across different temporal events and study the flow of
information over time; finally, (iii) spatial analysis, embedding the network in a ge-
ographic space to determine physical closeness and locality effects on the network
structure. LogViewer also allows to create multilayer spatio-temporal networks by
merging different network types and to perform the above-mentioned different types
of analysis on such a more complex network.

Our framework inherits different visualization layouts and algorithms from Log-
Analysis: some of them are discussed in details in our previous work [13]. Here we
first give an overview of the basic concepts borrowed by social network analysis and
their meaning in criminal network analysis; this includes network centrality measure
to identify roles in criminal networks, and community detection to unveil criminal
gangs hidden within the network. After that, we present the new features provided
by our criminal network analysis framework, especially ad hoc visualization meth-
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Fig. 1.1: Architecture of LogViewer.

ods that we devised keeping in mind the needs of law enforcement agencies, analysts
and investigators. We illustrate these advanced criminal network analysis features
by presenting examples or use cases inspired by real investigations, carried out by
Italian law agencies, that benefited from the adoption of LogViewer.

1.2 LogViewer framework

1.2.1 Architecture and workflow

LogViewer is a Web-based framework that allows advanced network analysis on
criminal networks reconstructed from various data sources, including (mobile)
phone data and online social network data. It supports spatio-temporal analysis and
it extends, de facto, the horizon of possibilities provided by LogAnalysis [13].

This framework implements various techniques of network generation, statistical
measurement, partitioning (or clustering), and visualization that rely on powerful
open-sources tools; the list includes GraphML for data storage, Python network
libraries for data import, normalization and network representation like NetworkX1

and iGraph, the Stanford Network Analysis Project (SNAP) library2 to efficiently

1 http://networkx.github.com/
2 http://snap.stanford.edu/
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compute network statistics, the Louvain method for network clustering [6], and the
Javascript D3.js3 library for interactive network visualization and exploration.

The architecture of LogViewer is represented in Figure 1.1. In the following we il-
lustrate the typical workflow to bootstrap a criminal investigation using LogViewer.
Let us use the example of data representing a mobile phone call network —the anal-
ysis of other sources, such as social network data, follows straightforwardly.

During an investigation, the agency in charge of it will obtain, usually through court
warrants, raw data from a Telecommunication Service Provider related to the phone
call interactions of a (possibly large) set of suspects involved in a certain criminal
activity. Such data are generally provided in different formats: LogViewer allows
some degree of standardization, supporting different formats adopted by various
European service providers, e.g., Vodafone, Orange, and others.

The analyst can import one (or more) datasets into LogViewer, which will take care
of appropriately reconstruct a network representation of such data, where each node
corresponds to a given entity (generally speaking, in the mobile phone cases, the
framework assumes a 1-to-1 mapping from phone to person, but it also supports
the assignment of multiple phone numbers to the same entity, whereas such infor-
mation is provided). Interconnections among entities, representing phone calls, are
imported as links of this network. Duration and frequency of the calls are encoded
in the network representation by means of different weighting systems that can be
adopted by the analysts. For example, the raw number of calls between a pair of en-
tities, or the average or total duration, among others, are available metrics that can
be used for this purpose. This yields the possibility of performing dynamic network
representation and temporal analysis.

In addition, each phone interaction reports geo-referenced data about the location
of the caller and the called nodes (e.g., extrapolated from the GPS sensors on the
mobile device, or approximated by the telephone cell corresponding to the physical
location of the individuals at the time of the call); such information is attached to
each event, to allow for spatial analysis. Once the data import procedure is com-
pleted, static representation (and spatio-temporal representation when meta-data are
available) becomes available through LogViewer’s visualization interface.

In the following, let us provide a bit more details about the type of data commonly
processed by LogViewer for criminal network analysis purposes.

3 http://d3js.org/
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Table 1.1: An example of the structure of a phone log file.

Field Description
IMEI IMEI code MS
called called user
calling calling user
date/time start date/time start calling (GMT)
date/time end date/time end calling (GMT)
type sms, mms, voice, data etc.
IMSI calling or called SIM card
CGI Lat. long. BTS company

1.2.2 Data and network representation

1.2.2.1 Mobile phone data

In the context of real-world investigations, mobile phone service providers, upon
request by judiciary authorities, release data logs, normally in textual file format,
with space or tab separation (CSV format). A typical log file contains, at least, the
values shown in Table 1.1.

Similarly, information about owners of SIM cards, dealers of SIM cards and op-
erations like activation, deactivation, number portability are provided by the ser-
vice providers as additional material to ease and support the investigation activities.
Log file formats produced by different companies are heterogeneous. LogViewer,
first of all, parses these files and converts data into GraphML format. It is an XML
valid and well-formed format, containing all nodes and weighted edges, each weight
representing the various weighting strategies (e.g., the frequency of phone calls)
used to represent the interactions between two connected nodes. GraphML has been
adopted both because of its extensibility and ease of import from different SNA
toolkits and graph drawing utilities.

1.2.2.2 Social graph data

Another rich source of information that is increasingly becoming adopted during
criminal investigation is represented by Online Social Network data. Such types of
datasets are provided by the Service Providers (like Facebook or Google) through
court warrants to the law enforcement agency, similarly to mobile phone records.

Generally speaking, the datasets obtained by OSN service providers provide user
meta-data related to the set of accounts of interest for the criminal investiga-
tion, including registration details (e.g., personal information, dates of account cre-
ation/deletion, etc.) along with the IP addresses corresponding to the devices used
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for connection (and/or the GPS coordinates of the mobile device, in case any con-
nection is performed in mobility). Logs include, among other data, the entire history
of wall posts and comments, pictures and photographs, check-in events in specific
physical locations, the chronology of incoming and outgoing friendship requests,
the list of friends (on Facebook) or contacts (followers and followees on Twitter and
similar platforms). Some platforms, like Facebook and Twitter, can provide detailed
logs of personal interactions, such as chat or personal messages. Possibly, the same
set of information is provided about any number of friends/contacts of the given in-
dividual target of the criminal investigation, if deemed relevant for the investigation
by the judiciary authorities. Such data about the target’s neighbors help enriching
the amount of information available to LogViewer to perform its analysis.

LogViewer processes these datasets and extracts the information that can be put in
form of network representation. For example, when reconstructing a social network,
link weighting schemes represent the interactions (e.g., number of wall comments,
frequency of chatting, etc.) between a pair of individuals. Although our framework
does not yet provide advanced content analysis, such additional information is often
adopted by the analysts by using external tools for traditional corpora analysis.

It’s worth noting that, in the context of a criminal investigation, the analysts will
study social network information with different lens, say in respect to the perspec-
tive of phone interactions. This is clearly due to the fact that online friendship, say
on Facebook, has a very different meaning if compared to phone interactions. On
the other hand, the possibility of performing further analysis on textual content pro-
duced by personal interactions (e.g., chat) eases the analysis, say with respect to
phone calls monitoring and analysis (which might not be possible whereas record-
ings are not readily available for investigation purposes or need additional warrants
to be accessed).

1.2.3 Data normalization and cleaning

Data clean-up usually means the deletion of redundant edges and nodes. This step
is very importante since datasets often contain redundant information, that crowds
graph visualization and biases statistical measures. In these circumstances, redun-
dant edges between the same two nodes are collapsed and a coefficient – i.e., a
edge weight – is attached, which expresses the number of calls. Our tool normalizes
data after reading and parsing log files whichever format they have been provided
among the standard formats (i.e., fixed width text, delimited, CSV, and more) used
by mobile service providers.
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1.3 Static analysis of criminal networks

1.3.1 Centrality measures

LogViewer takes into account the concept of centrality measure to highlight actors
that cover relevant roles inside the analyzed network [46]. Several notions of cen-
trality have been proposed during the latest years in the context of Social Network
Analysis.

There are two fundamentally different class of centrality measures in communica-
tion networks. The first class of measures evaluates the centrality of each node/edge
in a network and is called point centrality measure. The second type is called graph
centrality measure because it assigns a centrality value to the whole network. These
techniques are particularly suited to study phone traffic and criminal networks.

In detail, in LogViewer we adopted four point centrality measures (i.e., degree, be-
tweenness, closeness and eigenvector centrality), to inspect the importance of each
node of the network.

The set of measures provided in our tool is a selection of those provided by Social
Network Analysis [65]. It could be not sufficient to solve any possible task in phone
call network analysis. In fact, for particular assignments it could yet be necessary
to use additional tools in support to LogViewer and in further evolutions we plan to
incorporate new centrality measures.

For each centrality measure, the tool gives the possibility, to rank the nodes/edges
of the network according to the chosen criterion. Moreover, LogViewer allows to
select those nodes that are central, according to the specified ranking, highlighting
them and putting into evidence their relationships, by exploiting the node-link layout
techniques (discussed in the following). This approach makes it possible to focus
the attention of the analysts on specific nodes of interest, putting into evidence their
position and their role inside the network, with respect to the others.

In the following we formally describe the centrality measures used in LogViewer.

They represent the centrality as an indicator of the activity of the nodes (degree
centrality), of the control on other nodes (betweenness centrality), of the proximity
to other nodes (closeness centrality) and of the influence of a node (eigenvector
centrality).
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1.3.1.1 Degree centrality

The degree centrality of a node is defined as the number of edges adjacent to this
node. For a directed graph G = (V,E) with n nodes, we can define the in-degree and
out-degree centrality measures as

CD(v)in =
din(v)
n−1

, CD(v)out =
dout(v)
n−1

(1.1)

where din(v) is the number of incoming edges adjacent to the node v, and dout(v) is
the number of the outgoing ones.

Since a node can at most be adjacent to n−1 other nodes, n−1 is the normalization
factor introduced to make the definition independent on the size of the network and
to have 0≤CD(v)≤ 1.

In and out-degree centrality indicates how much activity is going on and the most
active members. A node with a high degree can be seen as a hub, an active nodes
and an important communication channel.

We chose to include the degree centrality for a number of reasons. First of all, is
calculation is computationally even on large networks. Furthermore, in the context
of phone call networks it could be interpreted as the chance of a node for catching
any information traveling through the network.

Most importantly, in this type of directed networks, high values of in-degree are
considered a reliable indicator of a form of popularity/importance of the given node
in the network; on the contrary, high values of out-degree are interpreted as a form
of gregariousness of the given actor in respect to the contacted individuals.

1.3.1.2 Betweenness centrality

The communication between two non-adjacent nodes might depend on the others,
especially on those on the paths connecting the two nodes. These intermediate ele-
ments may wield strategic control and influence on many others.

The core issue of this centrality measure is that an actor is central if she lies along
the shortest paths connecting other pairs of nodes. The betweenness centrality of a
node v can be defined as

BC(v) = ∑
s 6=v6=t

σst(v)
σst

(1.2)
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where σst is the number of shortest paths from s to t and σst(v) is the number of
shortest paths from s to t that pass through a node v.

The importance of the betweenness centrality regards its capacity of identifying
those nodes that vehiculate information among different groups of individuals.

In fact, since its definition due to Freeman [25] the betweenness centrality has been
recognized as a good indicator to quantify the ability of an actor of the network
to control the communication between other individuals and, specifically for this
reason it has been included in LogViewer.

In addition, it has been exploited by Newman [48] to devise an algorithm to identify
communities within a network. Its adoption in the phone traffic networks is crucial
to identify those actors that allow the communication among different (possibly
criminal) groups.

1.3.1.3 Closeness centrality

Another useful centrality measure that has been adopted in LogViewer is called
closeness centrality. The idea is that an actor is central if she can quickly interact
with all the others, not only with her first neighbors [49]. The notion of closeness is
based on the concept of shortest paths (geodesic) d(u,v), the minimum number of
edges traversed to get from u to v. The closeness centrality of the node v is define as

CC(v) =
1

∑u∈V d(u,v)
(1.3)

Such a measure is meaningful for connected graphs only, assuming that d(u,v) may
be equal to a finite value.

In the context of criminal networks, this measure highlights entities with the min-
imum distance from the others, allowing them to pass on and receive communica-
tions more quickly than anyone else in the organization. For this reason, the adoption
of the closeness centrality is crucial to put into evidence inside the network, those
individuals that are closer to others (in terms of phone communications).

In addition, high values of closeness centrality in such type of communication net-
works are usually regarded as an indicator of the ability of the given actor to quickly
spread information to all other actors of the network. For such a reason, the close-
ness centrality has been selected to be included in the set of centrality measures
adopted by LogViewer.
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1.3.1.4 Eigenvector centrality

Another way to assign the centrality to an actor of the network in LogViewer is based
of the idea that if a node has many central neighbors, it should be central as well.
This measure is called eigenvector centrality and establishes that the importance of
a node is determined by the importance of its neighbors.

The eigenvector centrality of a given node vi is

CE(vi) ∝ ∑
u∈Ni

Ai jCE(u) (1.4)

where Ni is the neighborhood of the given node vi, and x ∝ Ax that implies Ax = λx.
The centrality corresponds to the top eigenvector of adjacency matrix A.

In the context of telecom networks, eigenvector centrality is usually regarded as
the measure of influence of a given node. High values of eigenvector centrality are
achieved by actors who are connected with high-scoring neighbors, which in turn,
inherited such an influence from their high-scoring neighbors and so on.

This measure well reflects an intuitive important feature of communication networks
that is the influence diffusion and for such a reason we decided to include the eigen-
vector centrality in LogViewer.

1.3.1.5 Clustering coefficient

The clustering (or transitivity) coefficient of a graph measures the degree of inter-
connectedness of a network or, in other words, the tendency of two nodes that are
not adjacent but share an acquaintance, to get themselves in contact. High clustering
coefficients mean the presence of a high number of triangles in the network.

The local clustering coefficient Ci for a node vi is the number of links among the
nodes within its neighborhood divided by the number of links that could possibly
exist among them

Ci =
|{e jk}|

ki(ki−1)
: v j,vk ∈ Ni,e jk ∈ E (1.5)

where the neighborhood N of a node vi is defined as Ni = {v j : ei j ∈ E ∧ e ji ∈ E},
while ki(ki−1) is the number of links that could exist among the nodes within the
neighborhood.

In is well-known in the literature [65] that communication networks show high val-
ues of clustering coefficient since they reflect the underlying social structure of con-
tacts among friends/acquaintances. Moreover, high values of local clustering coef-



1 Uncovering criminal behavior with computational tools 13

ficient are considered a reliable indicator of of nodes whose neighbors are very well
connected and among which a substantial amount of information may flow. For such
a reason, LogViewer provides the possibility of computing both the global clustering
coefficient for any given phone call network and the local clustering coefficient of
any given node.

1.3.2 Community detection in criminal networks

A criminal network can be regarded as a special kind of social network in which
attention is devoted to secrecy and efficiency, since its members must communicate
without being detected [67]. On the other hand, the crucial task of uncovering the
functionalities of a criminal organization can be accomplished only by acquiring
knwoledge about the structure of the underlying criminal network. Criminal net-
works usually exhibit diversified compositions: hierarchical [55], cellular [61] and
flat structures [36] are the most common. One of the most relevant features of graphs
representing real networks like criminal networks is the emergence of clustering
phenomena, or communities. The detection of communities in criminal networks
brings, as a main consequence, the identification of groups and their structures via
the information coded in the topology of the corresponding graph.

The problem of finding communities in a network is often expressed as a clustering
problem. A widely adopted approach to solve this problem is based on the concept of
network modularity which can be expressed as follows: given a network, represented
by means of a graph G = (V,E), which has been partitioned into m communities, its
corresponding value of network modularity is

Q =
m

∑
s=1

[
ls
| E |
−
(

ds

2 | E |

)2
]

(1.6)

assuming ls the number of edges between vertices belonging to the s-th community
and ds is the sum of the degrees of the vertices in the s-th community. High values of
Q imply high values of ls for each discovered community, yielding to communities
internally densely connected and weakly coupled among each other.

The network modularity is therefore used as fitness function to solve an optimiza-
tion problem: among the several methods we mention here the Girvan and Newman
(GN) algorithm [29], and an optimized variant known as Newman’s algorithm [50],
which is fast enough to support interactive real-time adjustments. LogViewer pro-
vides two strategies for detecting communities, namely the already cited Newman’s
algorithm and the Louvain method [6], another modularity maximization algorithm
that performs very well with larger networks.
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We recently discussed in great detail the problem of detecting communities and
gangs inside criminal networks [23], and we point the reader’s attention toward that
work for an in-depth treatment of this topic.

1.3.3 Criminal network visualization

Typical network visualization tools rely on the popular force-directed layout [27].
The force-directed model represents the structure of the graph on the same foot as a
physical system, in which nodes are physical points subject to various forces; nodes’
coordinates (and therefore the layout itself) derive from the search of an equilibrium
configuration of the physical system modeled by the algorithm [9]. This particular
layout arrangement has the advantage of grouping users in clusters which can be
identified according to the heightened connectivity. The Barnes-Hut algorithm [5]
associated to this layout simulates a repulsive N-body system to continuously update
the position of the elements.

To optimize the visualization, it is possible to interactively modify the parameters
relative to the tension of the springs (edges). Nodes with low degree are associated
a small tension and the elements are located in peripheral positions with respect to
high degree nodes. Other parameters can be tuned, such as spring tension, gravita-
tional force and viscosity. Our goal, in the following, is to suggest two methods to
improve force-directed based layouts. As we will show, these techniques are espe-
cially well suited for criminal network analysis; however, they could potentially be
generalized for broader usage in other domains of network analysis — for example,
for applications in social and political sciences.

For the usage of traditional network visualization methods in criminal network anal-
ysis the reader should consult our recent paper on LogAnalysis [13].

1.3.3.1 Focus and context based visualization

The number of edges within a network usually grows faster than the number of
nodes. As a consequence, the network layout would necessarily contain groups of
nodes in which some local details would easily become unreadable because of den-
sity and overlap of the edges. As the size and complexity of the network grow,
eventually nodes and edges become indistinguishable. This problem is known as
visual overload [2]. A commonly used technique to work around visual overload
consists of employing a zoom-in function able to enlarge the part of the graph of
interest. The drawback of this operation is the detriment of the visualization of the
global structure which, during the zooming, would not be displayed. However, such
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a compromise is reasonable in a number of situations including, in some cases, the
domain of criminal network analysis.

During an investigation, it is crucial to narrow down the analysis to the relevant
suspects, to efficiently employ human and computational resources. Police officers
typically draw some hypotheses about an individual suspect of being part of a crim-
inal organization, or of being involved (or about to) in some crime; they concentrate
the initial investigation on this individual, and on that person’s social circles, as a
ground to build the social network object of analysis. The main role of visual anal-
ysis lies in allowing the detection of unknown relations, on the base of the available
limited information. A typical procedure starts from known entities, to analyze the
relations with other subjects and continue to expand the network inspecting first
the edges appearing the most between individuals apparently unrelated. During this
procedure, only some nodes are relevant and it is important to focus on them rather
than on the network as a whole.

Nevertheless, a spring embedded layout (including force-directed ones) does not
provide any support to this kind of focus and analysis. In these situations, focus and
context visualization techniques are needed to help a user to explore a specific part
of a complex network. To this purpose, we here introduce the fisheye and the foci
layouts.

1.3.3.2 Fisheye visualization

Focus and context is an interactive visualization technique [40]. It allows the user to
focus on one or more areas of a social network, to dynamically tune the layout as a
function of the focus, and to improve the visualization of the neighboring context.
The fisheye view is a particular focus and context visualization technique which has
been applied to visualize self-organizing maps in the Web surfing [72]. It was first
proposed by Furnas [28] and successively enriched by Brown et al. [56]. It is known
as a visualization technique that introduces distortion in the displayed information.

The fisheye layout is a local linear enlargement technique that, without modifying
the size of the visualization canvas, allows to enhance the region surrounding the
focus, while compressing the remote neighboring regions. The overall structure of
the network is nevertheless maintained. An example of application of this technique
is show in Figure 1.2. The picture shows a moderately small criminal network re-
constructed from phone call interactions of about 75 individuals. The layout on the
left panel is obtained by using a force-directed method implemented in our frame-
work, LogViewer. The analyst can inspect the nodes of the network, which contains
known criminals, suspects, and their social circles. When the focus is applied on a
given node, the visualization transitions to the fisheye layout (see the right panel).
A tool-tip with additional information about the node appears when the node is
selected — it shows the phone number, personal details, address, photo, etc. The
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Fig. 1.2: Fisheye visualization.

layout causes edges among remote nodes to experience stronger distortions than lo-
cal nodes. The upside of the presented method is the possibility to achieve the three
recommendations of Network Nirvana [57] when focusing on a given node: all the
nodes’ neighbors are clearly visible, the node degree is easily countable, and the
edges incident on that node can be identified and followed.

Note that fisheye and force-directed layouts can be used in conjunction. By com-
bining the two methods, our framework efficiently yields focus and context views.

1.3.3.3 Matrix layout

A network can be represented by using an adjacency matrix in which each cell i j
represents the edge existing between the vertex i and the vertex j. In our case, the
vertices represent the phone numbers of the users (the caller and the called), and the
edges represent their contacts. The natural visualization technique associated to this
two-dimensional representation of the graph is the matrix layout. Nevertheless, the
efficiency of a matrix diagram strongly depends upon the order of rows and columns:
if the nodes that are connected are placed in order, then clusters and connections
among communities can be easily identified. As shown in Figure 1.3, matrix cells
can be coded to show additional information: in this case different colors represent
different clusters.
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Fig. 1.3: Matrix layout and clustering.

On the contrary of node-link diagrams, matrix layout makes not easily identifiable
the paths connecting the vertices. On the other hand, when dealing with highly con-
nected networks, the node-link layout rapidly becomes unreadable as a consequence
of the large superposition of nodes and edges.

1.3.3.4 Foci layout

The foci layout implements three network visualization models: force-directed, se-
mantic and clustered layouts. The latter is based on the Louvain community detec-
tion algorithm [6]. Future implementations will explore other methods [19, 20]. Our
model supports multilayer analysis of the network through interactive transitions
from the force-directed layout, with a single gravitational center, to the clustered
one with more force centers placed in predetermined distinct areas. This layout al-
lows to analyze the network on various layering levels depending on specified node
attributes. Figure 1.4 shows the phone traffic network of some clans the previous
criminal network, in which the color of the nodes denotes the type of crime com-
mitted by the members.

In this example, the clustering truthfully reflects the known territorial division
among the groups belonging to the organization. In Figure 1.4 the focus is on a
specific node. Using this layout it is possible to contextually analyze the community
structure, the type of committed crime in respect to the members of the clan, and
the direct relations of each single individual. This layout integrates also the forth
Network Nirvana recommendation, namely the possibility to identify clusters and
to highlight the community structure.
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Fig. 1.4: Foci layout.

Fig. 1.5: Multi-foci layout.

1.4 Spatio-temporal criminal networks analysis

1.4.1 Temporal network analysis

Phone call records and online social network data comes with temporal information
attached to many events. For example, the time and duration of a call or a chat
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Fig. 1.6: Filtered and clustered multi-foci layout.

session, or the timestamp associated with the creation of a given phone contract or
account on a social platform, are common meta-data available for investigation.

LogViewer provides extensive support to encode and exploit temporal information,
when available, to perform network dynamic and temporal pattern analysis. One
example is provided in Figure 1.7, where we display LogViewer’s interface report-
ing aggregate temporal statistics related to the activity ongoing on a mobile phone
network under investigation.

In this example three types of information are displayed: on top, a time series re-
ports the volume of calls per day during the investigation period. It’s possible to see
how heterogeneous is this traffic, with a strong attenuation toward the end of the
observation period, after a spike coinciding with an actual criminal event in the real
world. The analysts has the possibility of zooming in the time series, to select differ-
ent sub-intervals, to display different types of statistics over time (e.g., total volume
of calls, or total duration, etc.) and to filter according to different types of constraints
(e.g., showing only the information related to a subset of users, for example a par-
ticular cluster). The applied filters are also reported underneath, for example as pie
charts that show specific statistics per day of the week, per type of event (e.g., phone
calls, texts, video calls, etc.) and per geographic area. Better resolution is provided
by histograms that bin the given statistics, say number of calls, per hour of the day.

Another example is provided in Figure 1.8 that shows a stream graph adopted to
visualize a sequence of temporal events on an aggregate basis. Stream graphs show
the potential of tools that provide dynamics and interactive data exploration. The
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Fig. 1.7: Temporal analysis of a criminal network.

x axis of the stream graph represents time, whereas the y axis reports an arbitrary
metric, say for the example in Figure 1.8 the total volume of phone interaction,
subdivided by type (e.g., calls, texts, Internet sessions, etc.), each displayed using a
different color. The stream is proportional to the number of events of each type per
unit of time (one bin here is one hour). LogViewer also implements stacked graphs.
Stream and stacked graphs represent especially helpful tools when the analysts want
to visually compare extensive metrics that depend on the volume of events in a
predetermined period.

By selecting the various temporal analysis tools and filters available, the analyst
can dissect the dataset under analysis to obtain granular temporal information or to
highlight and let emerge specific patterns of interactions among particular groups
of individuals. This, in conjunction with spatial filters that are discussed in the next
section, yields the ability to determine when (and where) information flows, and to
identify the peeks and lows of interaction activity among the members of a criminal
organization, to narrow down investigations towards specific periods of interest (that
might concur with events in the real world).
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Fig. 1.8: Stream layout of temporal dynamics in a criminal network.

1.4.2 Spatial network analysis

Along with temporal information, phone call records and online network datasets
report, among others, geographical coordinates of most of the events. Latitude and
longitude can be inferred from the BTS (Base Transceiver Station) of a cell, or di-
rectly derived from the GPS sensors of enabled devices. In related work [23] we
provide some additional detail on the inference mechanism behind the reconstruc-
tion of geo-coordinates from BTS cells.

LogViewer encodes, processes and presents spatial information to derive the mobil-
ity patterns of individuals, routine paths and points of interest, reconstructed from
the geo-referenced interconnections (both phone calls and online social network ses-
sions and check-ins). Figure 1.9 shows, for example, a case study inspired by a real
investigation where nodes, displayed in overlay onto a map, represent areas where,
during the observation period, intense contacts among a subset of the population
under investigation took place (node sizes encode the volume of calls binned by ge-
ographic position). Different filters are provided, along with a slider that allows to
“unfold” time and replay the evolution of such network simulating the temporal di-
mension. The spatial analysis, combined with the temporal filters, allow to observe
the dynamic patterns of interconnections among the individuals under observation,
and it’s especially helpful to locate them in space and time, that could help in those
cases when evidence is needed to prove someone’s presence in a determined loca-
tion during a specific event occurred in the real world (for example, a robbery or a
homicide).
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Fig. 1.9: Spatial analysis of a criminal network

1.5 A Use case inspired by real investigations

LogViewer has been successfully used in real forensic police investigations. Various
examples, and the details of the analysis presented here, have been discussed in our
latest work [23]: let us summarize few interesting results. Note that, as criminal
lawsuits are still in progress, some information has been intentionally obfuscated.

1.5.1 The initial configuration

We here discuss a case in which some people allegedly belong to a criminal network.
Police determined that phone traffic logs acquired (under court warrants) from the
service providers of the suspects might reveal crucial information about their in-
terpersonal relationships and communication dynamics. The logs reflect the phone
calls occurred throughout fifteen days among these individuals allegedly part of a
criminal association responsible of robbery, extortion and drug illicit trafficking.
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From the analysis of the interactions occurred in a given time interval it is also
possible to unveil the most important links, in terms of frequencies of relations and
flow of information. Links do not necessarily reflect the same type of relations:
different motivations can underlay phone interactions. In lack of advanced methods
for conversation analysis (and due to the lack of phone call recordings), content
analysis in some cases is impossible. However, the topology of the call networks is
precious to reveal possible structural groups and, from there, ascertain the details.

1.5.2 Finding subgroups

In Figure 1.10(a) we show the case study network after the Girvan-Newman (GN)
algorithm has been executed and 16 communities have been detected. Different col-
ors of the nodes identify different communities. To improve the clarity of the net-
work visualization, we exploit the clustered view as shown in Figure 1.10(b). This
configuration adopts a modified force-directed layout in which nodes of the same
community (same colors) form macro-nodes visualized with a circular layout. In
such a way, inter-connectivity among communities is captured better. The macro-
nodes can be further exposed to reveal intra-community relationships (see Figure
1.10(c)).

In this case, we are not interested only in the nodes that occupy prominent positions.
Rather, we should focus on those edges whose deletion during the execution of the
GN algorithm unveils new structural configurations, which in turn can be investi-
gated using additional information available to police. This analysis will result of
fundamental importance for the successful outcome of the investigation.

LogViewer supported this case investigation as follows: first, by automatically pars-
ing interaction data (phone traffic) from heterogeneous sources; then, by abstract-
ing a network representation of such data where nodes represent individuals, being
links their interactions —a node-link layout is employed for visualization purpose.
Finally, after performing community detection (and visualizing clusters), each mem-
ber of these groups is analyzed in depth, recursively refining the results.

From clustering, two interesting results follow. First, the more central edges are not
always responsible of driving the majority of the information, that is they are not in
charge of communications among clusters. They are, however, still important edges
from a topological point of view, and lethal when regarded inside their group. Sec-
ondly, clustering algorithms used to analyze criminal networks help to detect the
tightest groups, but the nature of the relations must be carefully evaluated using
information which can not be directly drawn from the mathematical model or its
graphical representation. Network metrics applied to our case study reveal that the
node with the highest degree (i.e., the highest number of phone calls) has a much
lower betweenness centrality than other nodes. In fact, criminal networks heavily
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(a) Case study network after the GN algorithm.
16 communities have been detected.

(b) Clustered view. Nodes of the same
community form macro-nodes visual-
ized with a circular layout.

(c) Macro-nodes zoom reveals intra-
community relationships.

Fig. 1.10: Communities as obtained by using Girvan Newman algorithm.
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employ secrecy to escape investigations and, in particular, a policy of internal com-
munications according to which the most important members issue orders to a very
limited number of members which in turn make them known to an increasing num-
ber of less important members until the leaves of the network are informed.

In our case study, the nodes having the highest number of communications (i.e., the
highest degree) represent the lieutenants of the criminal organization and not the
boss of the clan, while the edges traversed by the highest number of shortest paths
(i.e., having the highest betweenness centrality) represent the most important links
among the various groups.

Moreover, the granularity of the clustering allows to identify the optimal members
and edges to remove when trying to hinder or disrupt the clan criminal activities.

1.5.3 Overlapping communities

An important aspect in the analysis of communities is represented by the potential
overlap of communities. Both the algorithms implemented in LogViewer actually
perform a partition of the network, thus assigning each of the nodes to exactly one
cluster. Often, this is not a correct representation, at least on a semantic basis, of the
network. In a specific case such ours, even the algorithmic approaches described in
[51, 60] may produce questionable results because of the multiplicity of meanings
which can be given to any edge of the network. For this reasons, we decided to im-
plement LogViewer in such a way to allow the user to choose the level of clustering
in order to approximate the results. This feature is illustrated in Figure 1.11.

In Figure 1.11(a) only one cluster has been detected which is composed of the nodes
interconnected among the external clusters represented by the nodes “Elio” and
“Judy”, while in Figure 1.11(b), Qmax has been interactively decreased to a pre-
vious lower value. As a consequence, the interconnected nodes are subdivided and
new communities emerge.

The in-depth analysis carried out on the members of the clusters interconnected
(shown in Figure 1.11) —and the temporal analysis— allowed the investigators to
discover that some clans belonging to the criminal network had worked with a cer-
tain degree of autonomy and were responsible of some murders. It turned out that
these clans were tasked of committing murders on account of the organization. Fig-
ure 1.12 shows the clans at times t1 and t2 (all names are fictitious).

Some additional remarks are needed. Applying the GN community detection al-
gorithm without supervision (i.e., only to maximize the modularity), produces a
partition according to which the criminal network is composed of 14 clusters. The
maximum partition density is 0.014 and the largest community is composed of 84
nodes. This clustering is not coherent with the real structural subdivision of the
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(a) Qmax modularity.

(b) Qmax−1 modularity.

Fig. 1.11: An example of community detection using the Newman algortihm [48].
The convex-hull layout has been adopted for the visualization of the communities.

criminal network, as it emerged from the supervised interactive community detec-
tion procedure, combined with additional comparisons and in-depth examinations
obtained from other informative sources. Nevertheless, this result was very interest-
ing since important information regarding some members of the criminal network
emerged.

In particular, from the analysis of the different levels of clustering selected interac-
tively, and from the observation of the relative variations in the obtained configura-
tions, we identified which elements of the network were affected mostly.

Concluding, the analysis of the distribution of phone calls carried out by each clan
(see Figure 1.13) is a method generally very useful to decide if a good level of clus-
tering has been obtained after the execution of the community detection algorithm.
The goal of this analysis is twofold: first, it identifies the groups among which the
largest number of phone calls, texts, MMS, etc., took place; second, it highlights the
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(a) The criminal network at time t1.

(b) The criminal network at time t2.

Fig. 1.12: Community detection of a time-varying criminal network.

peaks of the stream of communications related not to single users but rather to each
cluster as a whole, on the occasion of a crime.

1.6 Related Work

In the latest thirty years academic research related to the application of social net-
work analysis to intelligence and study of criminal organizations has constantly
grown. One of the most important studies is due to Malcolm Sparrow [59], related to
the application of techniques of network analysis, and the study of network vulner-
abilities, for intelligence scopes. He underlined three key aspects of so-called crim-
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Fig. 1.13: Stacked histogram showing the phone call traffic carried out by each
group (or clan) in the time interval of 15 days.

inal network analysis (CNA): i) the importance of social network analysis (SNA)
for the analysis of criminal data; ii) the potential of added intelligence from network
analysis and, iii) the results deriving from the collaboration between the two sectors.

Sparrow defined four features peculiar of criminal networks (CNs): i) limited di-
mension — CNs are often composed of at most few thousand nodes; ii) information
incompleteness — criminal or terrorist networks are unavoidably incomplete due to
fragmentary available information and erroneous information; iii) undefined borders
— it is difficult to determine all the relations of a node; and, iv) dynamics — new
connections imply a constant evolution of the structure of the network.

Thanks to Sparrow’s work, other authors tried to study criminal networks using
the tools of SNA. For example, Baker and Faulkner [3] studied illegal networks
in the field of electric plants and Klerks [35] focused on criminal organizations in
The Netherlands. In 2001, Silke [58] and Brennan et al. [10] acknowledged a slow
growth in the fight against terrorism, and examined the state of the art in the field of
criminal network analysis.

Arquilla and Ronfeldt [1] summarize prior research by introducing the concept of
Netwar and its applicability to terrorism. They illustrate the difference between so-
cial networks and CNs, demonstrating the great utility of network models to un-
derstand the nature of criminal organizations. Their work shed light on strategies,
methods and systems of information flow for intelligence purpose. The framework
proposed by Arquilla and Ronfeldt provided new ground for conceiving network
analysis. Nevertheless, they received some criticism due to their theoretical ap-
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proach. Before 2001-09-11, some criticism can be found in the work of Carley,
Reminga and Kamneva [11], devoted to destabilizing initiatives of dynamic terror-
ist networks.

All these early studies somehow neglected the importance of network visualization,
stressing aspects related more to statistical network characterization, or interpreta-
tion of individuals’ roles rooted in social theory. However, in 2006, a popular work
by Valdis Krebs [36] applied graph analysis in conjunction with network visual-
ization theory to analyze the Al Qaeda cell responsible of the 2001-09-11 terrorist
attacks in the USA. This work represents a starting point of a series of academic
papers in which social network analysis methods become applied to a real-world
cases, differently from previous work where mostly toy models and fictitious net-
works were used. Krebs’ paper is one of the more cited papers in the field of ap-
plication of social network analysis to Criminal Networks and it inspired further
research in network visualization for the design and development of better SNA
tools applications to support intelligence agencies in the fight against terror, and law
enforcement agencies in their quest fighting crime.

In criminology and research on terrorism, SNA has been proved a powerful tool
to learn the structure of a criminal organization. It allows analysts to understand
the structural relevance of single actors and the relations among members, when
regarded as individuals or members of (one or more) subgroup(s). SNA defines the
key concepts to characterize network structure and roles, such as centrality [25],
node and edge betweenness [25, 8], and structural similarity [41]. The understanding
of network structure derived from these concepts would not be possible otherwise
[65]. The above-mentioned structural properties are heavily employed to visually
represent social and criminal networks as a support decision-making processes.

SNA provides key techniques including the possibility to detect clusters, identify
the most important actors and their roles and unveil interactions through various
graphical representation methodologies [73]. Some of these methods are explicitly
designed to identify groups within the network, while others have been developed to
show social positions of group members. The most common graphical layouts have
historically been the node-link and the matrix representations [26].

Visualization has become increasingly important to gain information about the
structure and the dynamics of social networks: since the introduction of sociograms,
it appeared clear that a deep understanding of a social network was not achievable
only through some statistical network characterization [65]. For all these reasons,
a number of different challenges in network visualization have been proposed [57].
The study of network visualization focuses on the solution of the problems related to
clarity and scalability of the methods of automatic representation. The development
of a visualization system exploits various technologies and faces some fundamental
aspects such as: i) the choice of the layout; ii) the exploration dynamics; and, iii) the
interactivity modes introduced to reduce the visual complexity.
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Recent studies tried to improve the exploration of networks by adding views, user
interface techniques and modes of interaction more advanced than the conventional
node-link and force-directed [27] layouts. For example, in SocialAction [52] users
are able to classify and filter the nodes of the network according to the values of their
statistical properties. In MatrixExplorer [32] the node-link layout is integrated with
the matrix layout. Nonetheless, these visualization systems have not been explicitly
developed with the aim of the exhaustive comprehension of all properties of the
network. Users need to synthesize the results coming from some views and assemble
metrics with the overall structure of the network.

Therefore, we believe that an efficient method to enhance the comprehension and
the study of social networks, and in particular of criminal networks, is to provide a
more explicit and effective node-link layout algorithm. This way, important insights
could be obtained from a unique layout rather than from the synthesis derived from
some different layouts.

We recently presented a framework, called LogAnalysis [13, 23], that incorporates
various features of social network analysis tools, but explicitly designed to han-
dle criminal networks reconstructed from phone call interactions. This framework
allows to visualize and analyze the phone traffic of a criminal network by integrat-
ing the node-link layout representation together with the navigation techniques of
zooming and focusing and contextualizing. The reduction of the visual complexity
is obtained by using hierarchical clustering algorithms. In this chapter we discuss
three new network layout methods that have been recently introduced in LogViewer,
namely fisheye, foci and geo-mapping, and we explain how these methods help in-
vestigators and law enforcement agents in their quest to fight crime.

It’s worth noting that various tools to support network analysis exist. However, only
few of them have been developed specifically for criminal network investigations.
We mention, among others, commercial tools like COPLINK [14, 71], Analyst’s
Notebook4, Xanalysis Link Explorer5 and Palantir Government6. Other prototypes
described in academic papers include Sandbox [68] and POLESTAR [53]. Some of
these tools show similar features to LogViewer, but, to the best of our knowledge,
none of them yields the same effective and scalable network visualization with sup-
port to criminal networks reconstructed from phone call records.

1.7 Conclusions

In this chapter we presented LogViewer, a next-generation Web-based framework
that provides advanced features for criminal network analysis. We first provided a

4 ibm.com/software/products/analysts-notebook/
5 http://www.xanalys.com/products/link-explorer/
6 http://www.palantir.com/solutions/

ibm.com/software/products/analysts-notebook/
http://www.xanalys.com/products/link-explorer/
http://www.palantir.com/solutions/
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high-level overview of the workflow that analysts follow to bootstrap a criminal
investigation by using a framework like ours, and then we presented some under-
lying theory behind the network measures, clustering methods, and visualization
techniques adopted to uncover criminal behavior in spatio-temporal networks re-
constructed from microscopic human interactions (e.g., mobile phone calls or online
social network data).

LogViewer paves the way for the creation of a general framework for the identi-
fication of criminal activities from digital footprints, however there is a lot to be
done yet. In our vision, this framework will extend at least in three fundamental
directions in the future: (i) infer roles of individuals in the hierarchical structure of a
criminal organization; (ii) predict crimes from spatio-temporal patterns of criminal
activity; (iii) predict which individuals within a social network are more exposed to
the possibility of turning into criminals in the future, given their social circles and
their interactions with existing criminals.

Concluding, from a technical perspective, we are already working to incorporate
further sources of network interactions at the microscopic level, such as financial
transaction records or face-to-face interactions that might be recorded and tracked
through advanced traditional investigation methods.
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51. Palla, G. and Derényi, I. and Farkas, I. and Vicsek, T. Uncovering the overlapping community
structure of complex networks in nature and society. Nature, 435:814–818, 2005

52. A. Perer and B. Shneiderman. Balancing systematic and flexible exploration of social net-
works. IEEE Transactions on Visualization and Computer Graphics, pages 693–700, 2006.

53. N. J. Pioch and J. O. Everett. Polestar: collaborative knowledge management and sensemaking
tools for intelligence analysts. In Proceedings of the 15th ACM international conference on
Information and knowledge management, pages 513–521. ACM, 2006.

54. D. M. Romero, B. Meeder, and J. Kleinberg. Differences in the mechanics of information
diffusion across topics: idioms, political hashtags, and complex contagion on Twitter. In Pro-
ceedings of the 20th international conference on World wide web, pages 695–704. ACM, 2011.

55. M. Sageman. Understanding Terror Networks. University of Pennsylvania Press, 2004.
56. M. Sarkar and M. H. Brown. Graphical fisheye views. Comm. ACM, 37(12):73–84, 1994.
57. F. Schneider, A. Feldmann, B. Krishnamurthy, and W. Willinger. Understanding online social

network usage from a network perspective. In Proceedings of the 9th SIGCOMM conference
on Internet measurement conference, pages 35–48. ACM, 2009.

58. A. Slike. The devil you know: Continuing problems with research on terrorism. Terrorism
and Political Violence, 13:1–14, 2001.

59. M. K. Sparrow. The application of network analysis to criminal intelligence: An assessment
of the prospects. Social Networks, 13(3):251–274, 1991.

60. Sun, P.G. and Gao, L. and Shan Han, S. Identification of overlapping and non-overlapping
community structure by fuzzy clustering in complex networks. Information Sciences,
181:1060–1071, 2011

61. M. Todd and A. Nomani. The Truth Left Behind: Inside the Kidnapping and Murder of Daniel
Pearl. New York (2011) - http://www.publicintegrity.org/2011/01/20/2190/, 2011.

62. O. Varol, E. Ferrara, C. Ogan, F. Menczer, and A. Flammini. Evolution of online user behavior
during a social upheaval. In Proceedings of the 2014 ACM conference on Web Science, pages
81–90. ACM, 2014.



34 Emilio Ferrara, Salvatore Catanese and Giacomo Fiumara

63. A. Vespignani. Predicting the behavior of techno-social systems. Science, 325(5939):425,
2009.

64. X. Wang, M. S. Gerber, and D. E. Brown. Automatic crime prediction using events extracted
from Twitter posts. In Social Computing, Behavioral-Cultural Modeling and Prediction, pages
231–238. Springer, 2012.

65. S. Wasserman and K. Faust. Social network analysis: methods and applications. Cambridge
University Press, 1994.

66. L. Weng, A. Flammini, A. Vespignani, and F. Menczer. Competition among memes in a world
with limited attention. Scientific Reports, 2, 2012.

67. U. K. Wiil, J. Gniadek, and N. Memon. Measuring link importance in terrorist networks. In
N. Memon and R. Alhajj, editors, ASONAM, pages 225–232. IEEE Computer Society, 2010.

68. W. Wright, D. Schroh, P. Proulx, A. Skaburskis, and B. Cort. The sandbox for analysis:
Concepts and methods. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’06, pages 801–810, New York, NY, USA, 2006. ACM.

69. J. Xu and H. Chen. Criminal network analysis and visualization. Communications of the
ACM, 48(6):100–107, 2005.

70. J. Xu, B. Marshall, S. Kaza, and H. Chen. Analyzing and visualizing criminal network dy-
namics: A case study. In Intelligence and Security Informatics, pages 359–377. Springer,
2004.

71. J. J. Xu and H. Chen. Crimenet explorer: a framework for criminal network knowledge dis-
covery. ACM Transactions on Information Systems (TOIS), 23(2):201–226, 2005.

72. C. Yang, H. Chen, and K. Hong. Visualization of large category map for internet browsing.
Decis. Support Syst., 35(1):89–102, Apr. 2003.

73. C. C. Yang, N. Liu, and M. Sageman. Analyzing the terrorist social networks with visual-
ization tools. In ISI, volume 3975 of Lecture Notes in Computer Science, pages 331–342.
Springer, 2006.


