
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Enhancing community detection using a network weighting strategy

Pasquale De Meo a, Emilio Ferrara b,⇑, Giacomo Fiumara a, Alessandro Provetti a

a University of Messina, Department of Physics, Informatics Section. V.le F. Stagno D’Alcontres 31, I-98166 Messina, Italy
b Center for Complex Networks and Systems Research, School of Informatics and Computing, Indiana University Bloomington, 919 E. 10th St., Bloomington,
IN 47408, USA

a r t i c l e i n f o

Article history:
Received 17 January 2012
Received in revised form 11 July 2012
Accepted 3 August 2012
Available online 30 August 2012

Keywords:
Network science
Complex network
Community detection
Social network
Social network analysis

a b s t r a c t

A community within a network is a group of vertices densely connected to each other but
less connected to the vertices outside. The problem of detecting communities in large net-
works plays a key role in a wide range of research areas, e.g. Computer Science, Biology and
Sociology.

Most of the existing algorithms to find communities count on the topological features of
the network and often do not scale well on large, real-life instances.

In this article we propose a strategy to enhance existing community detection algorithms
by adding a pre-processing step in which edges are weighted according to their centrality,
w.r.t. the network topology. In our approach, the centrality of an edge reflects its contribute
to making arbitrary graph transversals, i.e., spreading messages over the network, as short
as possible. Our strategy is able to effectively complements information about network
topology and it can be used as an additional tool to enhance community detection. The
computation of edge centralities is carried out by performing multiple random walks of
bounded length on the network. Our method makes the computation of edge centralities
feasible also on large-scale networks. It has been tested in conjunction with three state-
of-the-art community detection algorithms, namely the Louvain method, COPRA and
OSLOM. Experimental results show that our method raises the accuracy of existing algo-
rithms both on synthetic and real-life datasets.

Published by Elsevier Inc.

1. Introduction

Networks are a powerful tool to model real-life complex systems in many research fields like Biology, Sociology, Economy
and Computer Science [15,12]. Due to their dynamics and sheer size, networks representing online social networks, e.g.,
Facebook, are a fascinating, and challenging, example of network models.

Most networks representing real-life systems show the so-called community structure feature [18]: vertices tend to orga-
nize themselves in groups (called communities or clusters) such that the number of edges linking vertices of the same group is
much higher than the number of edges joining vertices belonging to different groups.

The ability to detect a community within a larger network plays a key role in understanding how systems are organized:
communities, in fact, can be regarded as modules whose functions or properties are, to some extent, separable from other
modules. The detection of communities is instrumental in understanding what are the main modules composing a real-life
system, how these modules interact and, finally, how they evolve and impact the overall network and its functions. Concrete

0020-0255/$ - see front matter Published by Elsevier Inc.
http://dx.doi.org/10.1016/j.ins.2012.08.001

⇑ Corresponding author.
E-mail addresses: pdemeo@unime.it (P. De Meo), ferrarae@indiana.edu (E. Ferrara), gfiumara@unime.it (G. Fiumara), ale@unime.it (A. Provetti).

Information Sciences 222 (2013) 648–668

Contents lists available at SciVerse ScienceDirect

Information Sciences

journal homepage: www.elsevier .com/locate / ins

Author's personal copy

examples from the biological domain rise from the task of understanding the functioning of metabolic networks [27], gene
regulatory networks [26] or other forms of interactions among proteins [49].

In Computer Science and Sociology, community detection algorithms are a powerful tool to understand how humans
interact. There are, in fact, many reasons prompting users to join communities or to form new ones: people may decide
to join a community because they share some interests with other community members [7] or because their attributes (like
class or race) or cultural interests match well with those of the members of an already established community [39]. Finally,
the Sociology literature shows that other factors (like ideologies and attitudes of the members of a community) can prompt a
user to join a community [32]. Understanding the processes leading a user to join a community can, therefore, have a deep
practical impact: for instance, in the design of advertisement and business applications, it is crucial to understand whether or
not communities in a social network consist of persons sharing the same needs and tastes. If such an hypothesis holds true it
is possible to selectively disseminate commercial advertisements only to its members (who might be interested in those ads)
rather than to the whole audience of the social network.

Due to its relevance, community detection has attracted the interest of many researchers and several, often interdisciplin-
ary, approaches have been proposed. Most of the existing community detection approaches aim at finding pairwise disjoint
communities, i.e., communities that do not share members (represented by vertices of the network). However, in the latest
years, some researchers started studying the problem of finding overlapping communities, i.e., a relaxed version, where a gi-
ven vertex may belong to multiple communities [44,25,36].

A major avenue to finding communities relies on the so-called spectral clustering techniques [43,50,29]. Spectral clustering
aims at partitioning a graph into subsets of vertices, called cuts. The problem of finding the optimal cuts is formulated as an
optimization problem. The main limitation of spectral clustering is that one has to know, or fix, in advance the number and
the size of communities in the network. Hence, this strategy is unfeasible when the purpose is to discover the unknown com-
munity structure of a network.

A further and relevant research line coincides with the introduction of a function called network modularity (usually de-
noted as Q) to quantitatively assess how structured in communities a given network is [23,6,13]. In brief, the network mod-
ularity of a given network N is defined as the fraction of all edges that lie within communities minus the expected value of
the same quantity in a random graph N0 so that: (i) it has the same number of vertices of N, (ii) each vertex of N0 has the
same degree of its peer in N and (iii) edges are placed randomly.

The introduction of the network modularity allows to turn the problem of finding communities into an optimization prob-
lem whose goal is to find a partitioning of the network capable of maximizing Q. Unfortunately, the maximization of Q is an
NP-hard problem [5] thus heuristics are required to find solutions (even near-optimal) and, at the same time, to guarantee
reasonable computational costs/scalability.

Existing approaches based on modularity maximization suffer, however, from two major drawbacks. The first drawback is
that methods that are actually able to achieve high values for Q work only on networks of small/medium size. Consider, for
instance, the first (and one of the most popular) algorithm to maximize modularity: the Girvan–Newman algorithm [23,42]. It
iteratively removes edges, with the goal of partitioning the network into increasingly-disjoint communities. Edges to be re-
moved are selected according to their betwenness centrality: a measure of fraction of shortest paths between vertices that
traverse that particular edge. Which in turn is a computationally-heavy measure, as it depends directly on the number of
vertices. Hence, Girvan–Newman and similar methods are computationally expensive and do not scale well to the size of
real-life networks consisting of, at least, millions of vertices and edges. Indeed, methods explicitly designed to handle large
networks are based on optimization techniques like simulated annealing [28] or extremal optimization [13] and, therefore, the
solution they produce may be sub-optimal. The second drawback is the so-called resolution limit [19]: communities consist-
ing of a number of vertices smaller than a threshold (which in turn depends on the number of edges of the network) are not
detected because the optimization procedure combines – with the goal of maximizing Q – small groups of vertices into larger
ones.

Several procedures have been proposed to alleviate the resolution limit problem such as providing novel definition of
modularity [38] or adding weights to the edges [34,2]. To sum it up, despite the recent advances, community detection is
still an open problem, even more so when we consider the growth, in sheer size and complexity, of online social networks.

In this article we propose a novel strategy to finding communities in networks which is based on the idea of introducing a
measure of edge centrality and weighting edges according to their centrality. Our ultimate goal, therefore, is meta-algorith-
mic: not to introduce yet another community detection algorithm but to develop a pre-processing step devoted to weight the edges
of the network. Once the weights have been computed, existing community detection algorithms will execute with better results.

The basis of our approach to the definition of edge weights, is the observation that in real-life social networks, a commu-
nity can be intuitively depicted as a group of participants (vertices) which frequently interact with each other (or at least more
frequently than they do with third parties). For instance, studies on online social networks like Facebook [16,17] or Twitter
[21] have shown that individuals belonging to the same community tend to frequently exchange messages with each other
and seldom with people residing out of the community itself. This implies the existence of preferential pathways along
which information flows easily. Hence, social links can be ranked according to their capacity to facilitate the process of infor-
mation propagation.

In fact, we believe that our approach represents a breakthrough because the methods considered until now rely only on
the knowledge of the network topology, whereas our approach suggests to complement information related to the network
topology with information assessing the tendency of each edge to transfer information.

P. De Meo et al. / Information Sciences 222 (2013) 648–668 649

Author's personal copy

A parameter similar to our edge weighting was proposed by Fortunato et al. [20] and is called efficiency. The efficiency of
the edge joining two vertices i and j is defined as the inverse of the length of the shortest path(s) connecting i to j. The effi-
ciency measure was used in the same paper to design a greedy algorithm to find communities; experimental results were
carried out over real and artificial small networks to provide an evidence of the effectiveness of this parameter.

Unfortunately, efficiency can not be generalized to large-scale networks like Facebook. In fact, to compute shortest paths,
the whole network topology should be inspected and such an assumption does not hold true in real social networks. In any
case, computing shortest paths in networks is costly, thus the computation of the network efficiency could be unfeasible over
large networks.

Our approach is tailored to large networks and addresses those issues by means of the random walks technique to sim-
ulate message passing. Random walks have been successfully exploited to simulate message passing in networks with the
goal of computing node centrality [41] and, in this article, we propose to extend them to the computation of edge weights.

We execute multiple random walks and assign to edges a weight that is equal to the cumulative frequency of selecting
that edge in a simulated random walk. This choice is in keep with our previous considerations because, in our procedure, an
edge has a high rank if it is frequently selected, i.e., if it is frequently exploited to convey messages. In addition, paths gen-
erated in our simulations have to satisfy two further requirements: (i) an edge can be selected only once in a random walk in
order to avoid that the weight of an edge may be excessively inflated and (ii) the random walks consist of up to j edges, j
being a fixed integer. In such a way, we acknowledge Friedkin’s postulate [22] that the more distant two vertices, the less
they influence each other. Moreover, the message propagation process is intended as a finite-steps process instead of a infi-
nite one, which is reasonable in the context of real-life and online social networks, where the spread of a given information
sooner or later stops. The weight associated with each edge according to this strategy is called j-path edge centrality. Its accu-
racy as an estimate of an edge’s importance depends, of course, on several factors, including the number of random walks
attempted and possible biases. To the best of our knowledge, there are only two previous works concerning edge weighting
in community detection, i.e. [34,2]. In those approaches the weight of a target edge is determined by computing some global
network metrics like edge betwenness [34] or by considering cycles of fixed length k that include the target edge [2]. Inev-
itably, those approaches may not scale up well. Our approach differs from those previous works since it exploits random
walks to compute edge weights and, therefore, it does not require to know in advance the whole network topology.

To sum it up, these are the main contributions of this article:

� We provide a formal definition of j-path edge centrality and describe an approximate algorithm called WERW-Kpath
(Weighted Edge Random Walk-j Path) to efficiently compute the j-path edge centrality.

� We prove that our WERW-Kpath algorithm can approximate the actual value of centrality of an arbitrary edge with
an error less than 1

jEj, jEj being the number of edges in the network, by performing O(jjEj) iterations. The WERW-Kpath
algorithm is fast because its computational complexity is nearly-linear in the number of edges of the network but, at
the same time, it yields precise results.

� We show how our edge weighting procedure can be combined with three existing, state-of-the-art algorithms for
community detection, namely the Louvain method [3,11], COPRA [25] and OSLOM [36].

� We report on the experimental assessment of our approach on both real and artificial network datasets. In particular,
we considered nine real-world network datasets and the largest, a sample from Facebook, consists of 613,497
vertices and 2,045,030 edges. Experiments on those networks show that combining WERW-Kpath with the
algorithms mentioned above leads to an increase of network modularity up to 16%.
Regarding the artificial networks, the experimental validation was conducted as follows: first, 72 artificial networks
were generated, by exploiting the LFR benchmark [35]; in this way, we managed networks whose community
structure was known in advance. Then, we compared communities found by our approach in conjunction with the
three methods above by using the so-called Normalized Mutual Information measure from Information Theory.
Experiments on these networks showed that our approach is able to alleviate the resolution limit problem. To make
our research results reproducible, the prototype we implemented is freely available for download.

This article is organized as follows: in Section 2 we review existing approaches to finding communities in networks,
whereas in Section 3 we describe in detail our approach. In Section 4 we discuss the WERW-Kpath algorithm; Section 5 de-
scribes our proposal of adopting the WERW-KPath algorithm in conjunction with community detection algorithms to en-
hance their performance. Section 6 is devoted to illustrate the experiments we carried out and to discuss the results.
Section 7 covers some related literature and, finally, in Section 8, we draw our conclusions and discuss possible
developments.

2. Background

Recently, a huge amount of research work has concerned the detection of community structures inside networks. In this
section we describe some of the existing approaches to detecting communities; here and throughout this article we will use
the terms network and graph interchangeably. Of course, the material presented in this section cannot be exhaustive and we
refer the reader to comprehensive surveys like [45,18].

650 P. De Meo et al. / Information Sciences 222 (2013) 648–668

Author's personal copy

Given a network represented by a graph G = hV,Ei, the community structure is a partition P = {C1,C2, . . . ,Cr} of the vertices of
G such that, for each Ci 2 P, the number of edges linking vertices in Ci is high in comparison to the number of edges linking
vertices on two distinct sets. Each set Ci is called community.

Today, the most popular techniques to find communities are: (i) spectral clustering and (ii) network modularity maximi-
zation. In the following we shall discuss approaches belonging to each of these categories in detail.

2.1. Spectral clustering techniques

Spectral Clustering techniques rely on the idea of partitioning a graph into subsets of vertices, called cuts. The number of
cuts to be generated is fixed in such a way as to minimize a given objective function.

The maximization of this objective function, however, has been proved to be NP-hard. Therefore, different approximate
techniques have been proposed. For instance, in [43], the authors suggest to use the Laplacian matrix L of a graph G. We recall
that the Laplacian matrix L of G = hV,Ei is a jVj � jVjmatrix such that Lij = kid(i, j) � Aij, where ki is the degree of a vertex i, d(i, j)
is the Kronecker symbol (that is, d(i, j) = 1 if and only if i = j and 0 otherwise) and Aij is the adjacency matrix of G. Authors in
[43] propose to compute the top-k eigenvectors of L, i.e., the eigenvector of L associated with the k eigenvalues having the
largest magnitude. The space of objects to cluster (source space) is then mapped onto the space generated by these eigenvec-
tors (target space). Finally, the k-means clustering algorithm [30] is applied on the points in the target space (with k
dimensions).

Another approach relies on the strategy of ratio cut partitioning [50,29]. This is a function that, if minimized, allows the
identification of large clusters with a minimum number of outgoing interconnections. More recently, some authors [40] rely
on the spectral decomposition of sparse matrices to find communities.

The main issue with spectral clustering techniques is that one has to know in advance the number and the size of com-
munities comprised in the given network. This makes this strategy unfeasible if the purpose is to unveil the community
structure of a network. Finally, Shah et al. [47] proved that this strategy could not work well if the given network contains
densely-connected yet small-sized communities.

2.2. Network modularity maximization

Strategies based on network modularity define a measure, called modularity and usually denoted as Q, to assess the qual-
ity of a partitioning of a graph G and aim at finding the partition of G that maximizes Q. Approaches based on network mod-
ularity rely on the idea that random graphs are not expected to exhibit a community structure. Therefore, given a graph G and a
subgraph C # G, the null model G0 associated with G is defined as a graph having the same number of vertices of G and ob-
tained by preserving some of the structural properties of G. For instance, G0 could have the same number of edges of G but
these edges could be placed with a uniform probability among all pairs of nodes; in such a case G0 is an example of a Bernoulli
random graph [18].

Thanks to the null model, it is possible to decide whether a subgraph C # G is a cluster or not. In fact, since G and G0 have
the same vertices, we can consider the subgraph C0 # G0 obtained by isolating, in G0, the vertices forming C in G. As claimed
before, the null model is expected to exibit no community structure and, therefore, we expect that C0 is not a community.
Therefore, if the density of internal edges of C is higher than that of C0, we can conclude that C is a community.

Accordingly, the network modularity function is defined as follows

Q ¼ 1
2m

X
i;j

ðAij � PijÞdðCi;CjÞ:

Here m is the total number of edges in G, Aij is the adjacency matrix of G, Pij is the expected number of edges between i and j
in the null model.1 As usual, d(�, �) is the Kronecker symbol.

Various null models are, in principle, allowed and, for each of them, we could derive a suitable expression for Pij. The most
common choice, however, is to assume that Pij is proportional to the product of the degrees ki and kj of i and j respectively.
According to this choice, Q can be rewritten as follows

Q ¼ 1
2m

X
i;j

Aij �
ki � kj

2m

� �
dðCi;CjÞ ð1Þ

Eq. (1) can be simplified by observing that only vertices belonging to the same community provide a non-zero contribu-
tion to the sum. In fact, if i and j would belong to different communities then Ci – Cj and d(Ci,Cj) = 0 by definition. As a result,
we can rewrite the modularity function Q as follows

Q ¼
Xnc

c¼1

lc

m
� dc

2m

� �2
" #

ð2Þ

1 Notice that Pij is a real number in [0,1].

P. De Meo et al. / Information Sciences 222 (2013) 648–668 651

Author's personal copy

where nc is the number of communities, lc is the total number of edges joining vertices inside the community c and dc is the
sum of the degrees of the vertices composing c. In Eq. (2), for a fixed community c, the first term, i.e., lc

m (called coverage) is the
fraction of the edges of the graph inside c, whereas the second term dc

2m

� �2
is the expected fraction of edges that would belong

to c in a random graph with the same degree distribution of G.
The problem of maximizing Q has been proved to be NP-hard [5]. To this purpose, several heuristic strategies to maximize

the network modularity Q have been proposed as to date. Probably, the most popular one is known as the Girvan–Newman
strategy [23,42].

In this approach, edges are ranked by using a parameter known as edge betweenness centrality. The edge betweenness cen-
trality B(e) of a given edge e 2 E is defined as

BðeÞ ¼
X
v i2V

X
v l2V

npeðv i;v lÞ
npðv i;v lÞ

ð3Þ

where vi and vl are vertices in V, np(vi,vl) is the number of shortest paths connecting vi and vl and npe(vi,vl) is the number of
the shortest paths between vi and vl containing e.

Given the definition of edge betweenness centrality, it is possible to maximize the network modularity by progressively
deleting edges with the highest value of betweenness centrality, based on the consideration that they shall connect vertices
belonging to different communities [42]. The process iterates until a significant increase of Q is obtained. At each iteration,
each connected component of G identifies a community. Unfortunately, the computational cost of this strategy is O(jVj3) and
this makes it unsuitable for the analysis of large networks. The most time-expensive part of the Girvan–Newman strategy is
the calculation of the betweenness centrality. Efficient algorithms have been designed to approximate the edge betweenness
[4]; for real-life networks the computational costs still remains prohibitive, unfortunately.

Several variants of this strategy have been proposed during the years, such as the Fast Clustering Algorithm provided by
Clauset et al. [6], that runs in O(jVj log jVj) on sparse graphs. In [13], Duch and Arenas proposed the extremal optimization
method based on a fast agglomerative approach whose worst-case time complexity is O(jVj2 log jVj).

An interesting network modularity maximization strategy is provided in the so-called Louvain method (LM) [3,11]. LM has
been tested in our experimental trials in conjunction with our approach to weighting edges; we present a detailed descrip-
tion of it in Section 5.

The approaches mentioned above use greedy strategies to maximize Q. In [27] the authors propose to use simulated anneal-
ing to maximize Q. This approach achieves a high accuracy but can as well be computationally very expensive. In general
terms, the advantage of simulated annealing techniques is that they do not suffer of the problem of getting stuck in local
optima, differently from greedy algorithms.

2.3. Finding overlapping communities

The algorithms presented above aim at finding disjoint partitions, i.e., partitions in which each vertex belongs to exactly
one community. It is interesting, also for practical purposes, to consider the relaxed case, where vertices may happen to be-
long to different communities. To clarify this concept, let us consider a network of researchers in Computer Science and ob-
serve that a researcher may belong to multiple communities like Database and Artificial Intelligence. Communities sharing
one or more vertices are said to be overlapping and the task of finding overlapping communities in networks has become one
of the most popular research topics in Complex Networks research areas [18].

To the best of our knowledge, one of the first attempts to discover overlapping communities is due to Palla et al. [44] who
introduced CFinder; it detects communities by finding cliques of size k, where k is a parameter provided by the user. Such
approach is time-expensive because the computational complexity of the clique detection is exponential in the number
of involved nodes. Experiments show that it scales well on real networks consisting up to 105 nodes and, moreover, that
it achieves a great accuracy.

Two other popular algorithms are COPRA (Community Overlap PRopagation Algorithm) [25] and OSLOM (Order Statistics
Local Optimization Method) [36]. Both have been used in conjunction with our approach and, therefore, a detailed description
of them will be presented in Section 5.

3. Overview of the proposed approach

In this section we describe the main flavors of our approach and we will illustrate why the strategy of weighting edges in
a network can improve the process of finding communities.

We start by observing that all approaches described in Section 2 consider the network topology as the privileged (and,
often, the only) source of knowledge to find communities. This concept, however, runs contrary to the sense of community
we expect, for example, in large online social networks like Twitter and Facebook. We guess, in fact, that communities in
these types of networks can be identified as groups of users frequently interacting each other. As a consequence, we expect
that the volume of information exchanged among community members is significantly higher than the volume of informa-
tion exchanged between the community members and people outside the community itself.

652 P. De Meo et al. / Information Sciences 222 (2013) 648–668

Author's personal copy

The network topology alone tells whether two users are connected, and therefore, if two users are able to directly ex-
change messages or not; however, it does not provide any indication whether two users actually communicate and, more
in general, it does not inform us about the existence of preferential pathways along which information flows. To better clarify
this concept, consider again networks like Facebook or Twitter. In both of them, a single user may have a large number of
contacts with whom she/he can exchange information (e.g., a wall post on Facebook or a tweet on Twitter). However, studies
in anthropology reveal that there is an upper limit to the number of people with whom a user can maintain stable social
relationships and this number is known as Dunbar number [14]. For instance, in Facebook, the average number of friends
of a user is 120 but men actively communicate with only 10 of them, whereas women with 16.2

This implies that social links in a network can be ranked on the basis of their aptitude of favoring the diffusion of infor-
mation over the network itself. Such a ranking is useful to better understand how information flows among users.

As a consequence, we suggest to complement information about network topology by weighting each edge such that the
weight of an edge is an indicator of the tendency of the edge itself of transferring information. This supplementary source of
knowledge will be later used (see Section 5) to find communities.

A concept similar to that introduced above has been already presented in [20]. In that paper, the authors assume that
information from a vertex i to a vertex j travels along the shortest paths connecting the vertices. They define a parameter,
called efficiency eij as the inverse of the length of the shortest path connecting i and j and used it to define a greedy algorithm
to find communities. The algorithm identifies the edges that, if removed, are able to generate the largest disruption in the
network’s ability of exchanging information among its vertices and progressively delete them with the goal of splitting
the network into communities.

In [20], the authors assume that information flows along shortest paths in networks. We guess that such an assumption
could not hold true in real scenarios: for instance, in online social networks like Facebook, a user is agnostic about the whole
network topology and, therefore, she/he is not able to find shortest paths. In addition the computation of information cen-
trality requires to calculate shortest paths and this activity can be prohibitively time-expensive in real networks.

To solve these drawbacks, we borrow some ideas that have been successfully applied in the past to compute node cen-
trality. In particular, Newman suggested to simulate message passing in networks by means of random walks with the goal
of computing node centrality [41]. A similar approach has been more recently considered in [1].

We propose to simulate multiple random walks and assume that the rank of an edge coincides with the frequency of
selecting the edge itself in all the simulations. This is compliant with our previous reasoning because, in our procedure,
an edge will get a high rank if it is frequently selected, i.e., if it is frequently exploited to convey messages.

Our procedure has been designed to address the following requirements:
Simple Paths. We must avoid that simulated random walks may pass more than once through an edge because this would

disproportionately inflate the rank of some edges and penalize other ones.
Bounded Length Paths. As shown in [22], ‘‘distant’’ nodes in social networks (i.e., those nodes that are connected by long

paths only) are unlikely to influence each other. We agree with this observation and figure that two nodes are considered to
be distant if the path connecting them is longer than j hops, being j a fixed threshold. The impact of j on the performance of
our approach will be extensively described in Section 6. In addition, random walks of bounded length well represent the
finiteness of the process of information propagation over large social networks.

The weight associated with each edge will be called j-path edge centrality. As a final comment, observe that our approach
takes as input a graph G = hV,Ei and maps it onto a weighted graph G0 = hV,E,Wi such that Wij is the weight of the edge con-
necting vertices i and j. Our approach is, therefore, flexible in the sense that we can use it conjunction with any community
detection algorithm. The community detection algorithm will run on G0 and, therefore, it can get a benefit from not only
information about network topology but also on information on edge centralities.

4. Computation of edge weights

In this section we introduce an algorithm to assign weights to the edges of a network in compliance with the require-
ments illustrated in Section 3. We first formalize the concept of j-path edge centrality (see Section 4.1). After that, we de-
scribe an approximate algorithm, called WERW-Kpath (see Section 4.2) for quickly computing j-path edge centralities.
Finally, in Section 4.3 we formally analyze the accuracy achieved by the WERW-Kpath algorithm.

4.1. The j-path edge centrality

The concept of j-path edge centrality extends the concept of j-path vertex centrality introduced for the first time in [1]. The
j-path vertex centrality relies on the concept of simple j-path:

Definition 1. (simple j-path). Let G = hV,Ei be a graph and let j > 0 be an integer. A simple j-path is a simple path
comprising at most j edges in G and these edges are selected at random.

We are now able to formally introduce the notion of j-path vertex centrality [1].

2 http://www.economist.com/node/13176775?story_id=13176775.

P. De Meo et al. / Information Sciences 222 (2013) 648–668 653

Author's personal copy

Definition 2. (j-path vertex centrality). Let: (i) G = hV,Ei be a graph, (ii) j > 0 be an integer and (iii) vn 2 V be a vertex in G.
The j-path vertex centrality Cj(vn) of vn is the sum, over all possible source vertices s, of the probability with which a
message originated from s goes through vn, assuming that the message traversals are only along simple j-paths.

The concept of j-path vertex centrality can be extended so that to assess the relevance of an edge in a network. Such a
concept is formalized in Definition 3.

Definition 3. (j-path edge centrality). Let: (i) G = hV,Ei be a graph, (ii) j > 0 be an integer and (iii) e 2 E be an edge of G. The
j-path edge centrality Lj(e) of e is the sum, over all possible source vertex s, of the probability with which a message
originated from s traverses e, assuming that the message traversals are only along random simple j-paths.

In the following, we shall introduce an algorithm, called WERW-Kpath to efficiently compute j-path edge centrality.

4.2. The WERW-Kpath algorithm

In this section we present the WERW-Kpath (Weighted Edge Random Walk-j Path), an approximate algorithm to efficiently
compute the edge centrality.

The WERW-Kpath algorithm takes a graph G = hV,Ei and an integer j as input and simulates q simple random paths of at
most j edges on G such that the length of each random walk is no greater than j. Here q is a fixed integer whose tuning will
be discussed later. At the beginning, a weight x(e) = 1 is assigned to each edge e 2 E. In each simulation, a source node s is
selected and s is assumed to inject a message in G; after that, s selects, according to some strategy, one of its neighboring
vertices, say w, and forwards it the message. The weight of the edge connecting s and w is increased by 1 and the process
restarts from w.

Owing to this informal discussion, it emerges that the key ingredients of the WERW-Kpath algorithm are the strategies
exploited to select the starting node and the edges invoked to convey the message. These strategies define a message prop-
agation model on G. In the WERW-Kpath algorithm we consider a model relying on two main assumptions.

The first assumption is that vertices are not all equally relevant to generate and spread messages. In detail, we decide to
privilege vertices representing users with a high level of engagement in the social networks because we assume that the
higher the number of connections of a user, the more marked her/his aptitude to generate and spread messages. To quan-
titatively encode this intuition we defined, for each vertex vn 2 V, the normalized degree d(vn) of vn as follows

dðvnÞ ¼
jIðvnÞj
jV j

being I(vn) the set of edges incident onto vn.
The normalized degree d(vn) correlates the degree of vn to the total number of vertices in the network. It ranges in the real

interval [0,1] and the higher d(vn), the better vn is connected in the graph. We suggest that the probability of selecting vn as
the source vertex is proportional to d(vn).

The second assumption is that edges are not all equally relevant in conveying messages. This is compliant with the fact
that, in real life, a user does not select totally at random the user to whom a message should be forwarded but she/he selects
the addressee according to some criteria. These criteria may be formulated by assuming that edges in G are weighted and
requiring that a user selects an edge to convey a message on the basis of the edge weights. Unfortunately, weights on edges
should be the output of the algorithm and not its input and, then, we do not have at our disposal weights allowing us to select
edges.

We solved this issue by observing that, in the WERW-KPath algorithm, edge weights are initially uniformly assigned be-
cause all edges are deemed equally important in transferring messages; after that, the weight of an edges will be increased if
that edge is selected to convey a message.

If we would stop the WERW-Kpath algorithm after ‘ iterations (with ‘ < q), the weight currently associated with that edge
would represent an approximation of its actual weight. Of course, the higher ‘, the better this approximation.

The weight assigned to each edge at the arbitrary, ‘th iteration, is therefore an approximation of its centrality value
obtained by stopping the simulation procedure after ‘th iterations. Due to the definition of edge centrality, the WERW-
Kpath algorithm has to select, in each iteration, the edge having the highest centrality value and, therefore, the highest
weight.

More formally, in the ‘th iteration, we propose that the probability Pr (em) of selecting an edge em is proportional to its
current edge weight x(em)

PrðemÞ ¼
xðemÞP

em2bIðvnÞ
xðemÞ

ð4Þ

being bIðvnÞ ¼ fek 2 IðvnÞjTðekÞ ¼ 0g, where T(ek) is defined as follows

TðemÞ ¼
1 if em has already been traversed;
0 otherwise:

�
ð5Þ

654 P. De Meo et al. / Information Sciences 222 (2013) 648–668

Author's personal copy

In this way, the weight already awarded to an edge e is assumed to be an indicator of its tendency to transfer messages.
By putting together all these ideas we are able to provide a more formal description of the WERW-Kpath algorithm. It

takes a graph G = hV, Ei as input and, as previously pointed out, it assigns each edge em 2 E with a weight x(em) = 1.
After that, it iterates the following sub-steps a number of times equal to q, being q a fixed value (we will study in

Section 4.3 the impact of q on the performance of the algorithm):

1. A vertex vn 2 V is selected at random with a probability Pr (vn) proportional to d(vn).
2. All the edges in E are marked as not traversed.
3. The procedure MessagePropagation is invoked. It generates a simple random walk starting from vn whose length is not

greater than j.

Let us describe the procedure MessagePropagation. For the purpose of readability, the pseudo-code of the MessagePropa-
gation procedure is reported in Algorithm 1.

Algorithm 1. MessagePropagation (vn: a Vertex, N: an integer, j: an integer, x: an array of weights)

1: while N < j and jIðvnÞj >
P

ek2IðvnÞTðekÞ
h i

do

2: em em 2 {I(vn)jT(em) = 0}, chosen with probability given by Eq. (4).
3: Let vn+1 be the vertex reached by vn through em

4: x(em) x(em) + 1
5: T(em) 1
6: vn vn+1

7: N N + 1

This procedure carries out a loop until both the following conditions hold true:

1. The length of the path currently generated is no greater than j. This is managed through a length counter N.
2. Assuming that the walk has reached the vertex vn, the loop continues if there exists at least one edge incident on vn

which has not been already traversed.
Since I(vn) is the set of edges incident on vn, the following condition must be true:

jIðvnÞj >
X

ek2IðvnÞ
TðekÞ ð6Þ

The former condition allows us to consider only paths up to length j. The latter avoids that the message passes more than
once through an edge.

If the conditions above are satisfied, the MessagePropagation procedure selects an edge em at random, with a probability Pr
(em) given by Eq. (4).

Let em be the selected edge and let vn+1 be the vertex reached from vn by means of em. The MessagePropagation procedure
increases x(em) by 1, sets T(em) = 1 and increases the counter N by 1. The message propagation re-starts from vn+1.

At the end, for each edge em 2 E, the WERW-Kpath algorithm sets bLjðeÞ xðemÞ
q . This value will be adopted as the centrality

of em.
The pseudocode describing the WERW-Kpath algorithm is reported in Algorithm 2.

Algorithm 2. WERW-Kpath (G = hV,Ei: a Graph, j: an integer, q: an integer)

1: For each em 2 E set x(em) 1
2: for i = 1 to q do
3: N 0 a counter to check the length of the j-path
4: vn a node chosen uniformly at random
5: MessagePropagation (vn,N,j,x)

6: For each em 2 E set bLjðemÞ xðemÞ
q

4.3. Formal analysis

In this section we investigate to what extent the value bLjðeÞ returned by the WERW-Kpath algorithm is a ‘‘good’’ approx-
imation of the actual centrality value of an edge provided in Definition 3. In detail, we will show that if we perform
q = O(jVjlogjVj) iterations then the error we make by replacing Lj(e) with bLjðeÞ is no greater than 1

jV j.

P. De Meo et al. / Information Sciences 222 (2013) 648–668 655

Author's personal copy

To prove this result we need the following, preliminary Theorem, known as Hoeffding inequality:

Theorem 4.1 (Hoeffding inequality). Let X1, . . . , Xn be independent random variables. Assume that, for each i such that 1 6 i 6 n,
the random variable Xi ranges in the real interval [ai,bi]. Let X ¼ ðX1 þ � � � þ XnÞ=n. For any t P 0 we have:

PrðjX � E½X�jP tÞ 6 2 exp � 2t2n2Pn
i¼1ðbi � aiÞ2

 !
ð7Þ

Proof 1. See [31] h

As a special case, let that all the random variable Xi can only assume the values 0 and 1. In such a case, Eq. (7) simplifies to

PrðjX � E½X�jP tÞ 6 2 expð�2t2nÞ ð8Þ

We are now able to prove our claims.

Theorem 4.2. Let G = hV,Ei be a network and n > 0. Assume to run the WERW-Kpath algorithm on G. The following conditions hold
true:

1. If we set q ¼ 1
2 n�2, then there exists a constant C such that PrðjbLjðeÞ � LjðeÞjP nÞ 6 C.

2. There exist two constants a > 0 and b > 0 such that, if we fix q ¼ a
2 jV j

b log jV j and n ¼ jV j�
b
2, for each edge e 2 E we have:

PrðjbLjðeÞ � LjðeÞjP nÞ 6 2
jV ja

Proof 2. By Definition 3, the edge centrality Lj(e) of an edge e is defined as follows

LjðeÞ ¼
X
s2V

Prðe; sÞ ð9Þ

being Pr(e,s) the probability of selecting the edge e starting from the source node s.
By the definition of conditional probability we can write

LjðeÞ ¼
X
s2V

PrðejsÞPrðsÞ ð10Þ

being Pr(s) the probability that s is the source vertex. Let us now analyze the output generated by the WERW-Kpath
algorithm.

Since the WERW-Kpath algorithm performs q iterations, we will first focus on the result produced in a given iteration, say
the ‘th iteration with 1 6 ‘ 6 q.

During the ‘th iteration, a simple random walk of at most j edges is generated. The edges composing the random walk are
selected one-by-one and we will say that we are in the ith trial if i � 1 edges have been already selected.

Let us define the random variable Xis(e) as follows

XisðeÞ ¼
1 if e has been selected at the ith trial and s is the source vertex
0 otherwise:

�
Define now the random variable Y(e) as follows

YðeÞ ¼
Xj
i¼1

X
s2V

XisðeÞ

The variable Y(e) is equal to 1 if e has been selected and 0 otherwise. In fact, independently of the starting vertex s, an edge
e can be selected at most one time in all trials (otherwise the path would pass through it more than once).

By taking the expectation of Y(e) we get

E½YðeÞ� ¼ E
Xj
i¼1

X
s2V

XisðeÞ
" #

¼
Xj
i¼1

X
s2V

E½XisðeÞ�

Since Xis(e) is an indicator variable, we have that E[Xis(e)] = Pr(Xis(e) = 1) (see [8] for further details), and therefore

E½YðeÞ� ¼
Xj
i¼1

X
s2V

PrðXisðeÞ ¼ 1Þ

656 P. De Meo et al. / Information Sciences 222 (2013) 648–668

Author's personal copy

Let us denote as Pr(e, i,s) = Pr(Xis(e) = 1) and, by Bayes’ rule, we have that Pr(e, i,s) = Pr(e, ijs)Pr(s). We obtain

E½YðeÞ� ¼
Xj
i¼1

X
s2V

Prðe; i; sÞ ¼
Xj
i¼1

X
s2V

Prðe; ijsÞPrðsÞ

In the WERW-Kpath algorithm, we have that Pr(s) is equal to d(s). By changing the order of the double sum we get

E½YðeÞ� ¼
X
s2V

Xj
i¼1

Prðe; ijsÞ
 !

PrðsÞ

Let us focus on the term
Pj

i¼1Prðe; ijsÞ. The WERW-Kpath algorithm generates a simple random walk, and, therefore, if e is
selected in a trial, say i1, it can not be selected in another trial i2 such that i1 – i2. By summing over all indices i = 1 . . . j, we
obtain that

Pj
i¼1Prðe; ijsÞ is the probability of selecting e starting from s as the source vertex in an arbitrary trial. As a con-

sequence,
Pj

i¼1Prðe; ijsÞ ¼ PrðejsÞ. We can then rewrite E[Y(e)] as

E½YðeÞ� ¼
X
s2V

PrðejsÞPrðsÞ

By Eq. (10),
P

s2V PrðejsÞPrðsÞ is equal to Lj(e), and, therefore Lj(e) = E[Y(e)].
This means that, in a single run of the WERW-Kpath algorithm, the weight associated with e is a random variable

distributed as Y(e) and whose expectation coincide with Lj(e). This reasoning, of course, holds for any run ‘such that
1 6 ‘ 6 q. Therefore, the weight associated with e in the ‘th iteration is a random variable Y‘(e).

After completing q iterations the algorithm returns, for each edge e, the value bLjðeÞ ¼ 1
q
Pq

‘¼1Y ‘ðeÞ. Here bLjðeÞ is a random

variable whose expectation is equal to Lj(e) because E½bLjðeÞ� ¼ E 1
q
Pq

‘¼1Y ‘ðeÞ
h i

¼ 1
q
Pq

‘¼1E½Y ‘ðeÞ� ¼ 1
q
Pq

‘¼1LjðeÞ

¼ 1
qqLjðeÞ ¼ LjðeÞ.

In order to compute how much bLjðeÞ differs from its expectation we can apply the Hoeffding inequality as in Eq. (8)

PrðjbLjðeÞ � LjðeÞjP nÞ 6 2 expð�2qn2Þ

If we set q ¼ 1
2 n�2, the previous equation simplifies to

PrðjbLjðeÞ � LjðeÞjP nÞ 6 2 exp �2
1
2

n�2n2
� �

¼ 2 expð�1Þ

By setting C ¼ 2 expð�1Þ we get the proof for the Part (1) of Theorem 4.2.
As for Part (2), if we fix n ¼ jV j�

b
2 and q ¼ a

2 jV j
b log jV j we get

2 expð�2qn2Þ ¼ 2 exp �2
a
2
jV jb log jV jjV j�b

� �
¼ 2 expð�a log jV jÞ ¼ 2

1
jV ja

and this ends the proof. h

We can use Theorem 4.2 to relate the number of iterations WERW-Kpath has to carry out with the approximation error it
incurs. This is encoded in the following corollary:

Corollary 4.3. Let G = hV,Ei be a network. According to the notation introduced in Theorem 4.2, if we set a ’ 1 and b ’ 1, we need
to perform q ’ jVj log jVj iterations in order to have

Pr jbLjðeÞ � LjðeÞjP 1ffiffiffiffiffiffi
jV j

p !
6

2
jV j

Proof 3. The proof is straightforward by applying Theorem 4.2-Part (2), with a ’ 1 and b ’ 1. h

Corollary 4.3 provides us a nice result: in fact, if we perform a number of iterations in the order of magnitude of O(jVj
logjVj) then the possibility that bLjðeÞ differs from the actual value Lj(e) more than 1ffiffiffiffi

jV j
p is less than 2

jV j. In real networks jVj

is quite large (often in the order of millions). For example, in a network constituted by one million nodes, the probability
that edge centrality values returned by the WERW-Kpath algorithm deviate from the actual ones more than 10�3 is less than
10�6. The consequence is that our algorithm provides a good trade-off between accuracy and scalability and, therefore, it is
fully applicable in real life scenarios.

To make computation more robust, however, in our experiments we set q = O(jEj) and, then, the worst-case time com-
plexity of the WERW-Kpath algorithm amounts to O(jjEj).

P. De Meo et al. / Information Sciences 222 (2013) 648–668 657

Author's personal copy

5. Applying j-path edge centrality to find communities

In this section we describe how to use the weights produced by the WERW-Kpath algorithm find communities in net-
works. We point out that, in principle, our algorithm can be used in conjunction with any existing community detection algo-
rithm. However, due to space limitation, we focus on three algorithms, namely the Louvain method (LM) [3], COPRA [25] and
OSLOM [36].

We focused on these algorithms because they show many interesting properties. In detail, the Louvain method is perhaps
one of the best algorithms in terms of accuracy and computational costs. COPRA is able to find both overlapping and non-
overlapping communities and finally, OSLOM is able to provide a high level of flexibility in the sense that it allows to manage
both directed and undirected graphs, to find overlapping and non-overlapping communities and, finally, to generate a hier-
archy of communities.

In the following we shall describe each of these algorithms in detail.

5.1. Louvain method–LM

The Louvain method (LM) has been proposed in 2008 by Blondel et al. [3] and it is perhaps one of the most popular algo-
rithms in the field of community detection. This popularity derives by the fact that LM provides excellent performance even
if the networks to process are very large. LM consists of two stages which are iteratively repeated. The input of the algorithm
is a weighted network G = hV,E,Wi being W the weights associated with each edge3. The modularity is defined as in Eq. (1), in
which Aij is the weight of the edge linking i and j and ki (resp., kj) is the sum of the edges incident onto i (resp., j).

Initially, each vertex i will form a community and therefore, there are as many communities as the vertices in V. After that,
for each vertex i, LM considers the neighbors of i; for each neighboring vertex j, LM computes the gain of modularity that
would take place by removing i from its community and placing it in the community of j. The vertex i is placed in the com-
munity for which this gain achieves its maximum value. If it is not possible to achieve a positive gain, the vertex i will remain
in its original community. This process is applied repeatedly and sequentially for all the vertices until no further improve-
ment can be achieved. This ends the first phase.

The second step of LM generates a new weighted network G0 whose vertices coincide with the communities identified
during the first step. The weight of the edge linking two vertices i0 and j0 in G0 is equal to the sum of the weights of the edges
between the vertices in the communities of G corresponding to i0 and j0. Once the second step has been performed, the algo-
rithm re-applies the first step. The two steps are repeated until there are no changes in the obtained community structure.

LM has three nice properties: (i) It is a multi-level algorithm, i.e., it generates a hierarchy of communities and the kth level
of the hierarchy corresponds to the set of communities found after k iterations of the algorithm. (ii) The most time expensive
component of the algorithm is the first step and, in particular, the evaluation of the gain the algorithm could attain by mov-
ing a vertex from a community to another one. However, an efficient formula to quickly compute such a gain has been pro-
vided by the authors. (iii) In the first stage, the algorithm sequentially scans all the vertices and, for each vertex i it computes
the gain achieved by moving i from its current community to one of the communities of its neighboring vertices. Therefore,
LM is non deterministic because, depending on the ordering of vertices, LM could produce different results. Experimental
trials show that the vertex ordering has no effects on the values of modularity. However, different vertex orderings could
impact on the computational costs of the algorithm.

5.2. COPRA

The COPRA (Community Overlap PRopagation Algorithm) algorithm relies on a label propagation strategy proposed for the
first time by Raghavan, Albert and Kumara in [46]. COPRA works in three stages: (i) Initially, each vertex v is labeled with a
set of pairs hc,bi, being c a community identifier and b (belonging coefficient) a coefficient indicating the strength of the mem-
bership of v to the community c; belonging coefficients are also normalized so that the sum of all the belonging coefficients
associated with v is equal to 1. Initially, the community associated with a vertex coincide with the vertex itself and the
belonging coefficient is 1. (ii) Then, repeatedly, v updates its label so that the set of community identifiers associated with
v is put equal to the union of the community identifiers associated with the neighbors of v; after that, the belonging coef-
ficients are updated according to the following formula

biðc; vÞ ¼
P

w2NðvÞbi�1ðc; vÞ
jNðvÞj

being N(v) the set of neighbors of v and bi(c,v) the belonging coefficient associated with v at the ith iteration. At each iter-
ation, all the pairs in the label of v having a belonging coefficient less than a threshold are filtered out; in such a case the
membership of v to one of the deleted communities is considered not strong enough. It is possible that all the pairs in a ver-
tex label have a belonging coefficient less than the threshold. In such a case, COPRA retains only the pair that has the greatest
belonging coefficient and deletes all the others. Finally, if more than one pair has the same maximum belonging coefficient,

3 Of course, in case of unweighted graphs, W is the adjacency matrix of G.

658 P. De Meo et al. / Information Sciences 222 (2013) 648–668

Author's personal copy

below the threshold, COPRA selects at random one of them and this makes the algorithm non-deterministic. After deleting
pairs from the vertex label, the belonging coefficients of each remaining pair are re-normalized so that they sum to 1. A stop-
ping criterium ensures COPRA ends after a finite number of steps. In such a case, the set of community identifiers associated
with v identify the communities to which v belongs to.

5.3. OSLOM

OSLOM (Order Statistics Local Optimization Method) is a multi-purpose technique that aims at managing directed and
undirected graphs as well as weighted and unweighted graphs. OSLOM is also able to detect overlapping communities
and to build hierarchies of clusters.

The strategy to discover clusters in a graph G is as follows: at the beginning a vertex i is selected at random and it forms
the first cluster C = {i}. After that, the q most statistically significant vertices in G are identified and added to C. Here q is a ran-
dom number and the significance of a vertex v is a parameter indicating the likelihood that v can be inserted in C. To formally
define the statistical significance, OSLOM considers a random null model, i.e., a class of networks without community struc-
ture. A network G0 in the random null model is generated by first copying all the vertices of G in G0. After that, multiple pair of
edges in G0 are selected at random and an edge is drawn between them. Due to this procedure, given a vertex v in G, there
will exist a vertex v0 in G0 corresponding to w. Analogously, given a subgraph C in G, there will be a subgraph C0 in G0 corre-
sponding to C such that each vertex in C0 corresponds to a vertex in C. The null model is expected not to have a community
structure and, therefore, it can be used as a benchmark to understand if a subgraph C in G is a community and to define the
statistical significance of a vertex v to C. In particular, we count the number l1 of vertices linking v with vertices in G; after
that, we consider the vertex v0 corresponding to v in G0 and we count the number l2 of edges linking v0 with vertices residing
in C0. If l1 > l2 we guess that v is significant to C (and can be included in it).

A community C can be associated with a score representing its quality; the score of a cluster C indicates to what extent C
contains vertices which have a high statistical significance with it. The main idea of OSLOM is to progressively add and re-
move vertices within C so that to improve its score; this procedure is called clean-up.

The whole process introduced above is repeated several times starting from different nodes in order to explore different
regions of G. This yields a final set of clusters that may overlap.

6. Experimental results

In this section we describe the experiments we carried out to assess the performance of the WERW-Kpath algorithm and
whether its usage is beneficial to raise the quality of a community detection algorithm.

The WERW-Kpath algorithm has been implemented in Java 1.6 and the prototype is freely available at the following URL4.
To perform our tests, we considered 9 datasets whose features are reported in Table 1.

Dataset 1 is a directed network depicting the voting system of Wikipedia for the elections of January 2008. Datasets 2–5
represent the undirected networks of Arxiv5 papers in the field of, respectively, High Energy Physics (Theory), High Energy
Physics (Phenomenology), Astro Physics and Condensed Matter Physics, as of April 2003. Dataset 6 represents a directed net-
work of scientific citations among papers belonging to the Arxiv High Energy Physics (Theory) field. Dataset 7 represents the
directed email communication network of the Enron organization as of 2004, originally made public by the Federal Energy Reg-
ulatory Commission during its investigation. Dataset 8 describes a small sample of the Facebook network, representing its di-
rected friendship graph. Finally, Dataset 9 depicts a large fragment of the Facebook undirected social graph (mutual friendship
relations) as of 2010.

Our experiments aim at answering three main research questions:

R1 How much does j impact on the performance of the WERW-Kpath algorithm? From Theorem 4.2, we showed that the
WERW-Kpath algorithm is convergent, i.e., if the number of iterations q we carry out grows, then the values returned

Table 1
Datasets exploited in our tests.

No. Network No. nodes No. edges Directed Type Ref.

1 Wiki-Vote 7,115 103,689 Yes Elections [37]
2 CA-HepTh 9,877 51,971 No Co-authors [37]
3 CA-HepPh 12,008 237,010 No Co-authors [37]
4 CA-AstroPh 18,772 396,160 No Co-authors [37]
5 CA-CondMat 23,133 186,932 No Co-authors [37]
6 Cit-HepTh 27,770 352,807 Yes Citations [37]
7 Email-Enron 36,692 377,662 Yes Communications [37]
8 Facebook 63,731 1,545,684 Yes Online social network [48]
9 SocialGraph 613,497 2,045,030 No Online social network [24]

4 http://www.emilio.ferrara.name/werw-kpath/.
5 Arxiv (http://arxiv.org/) is an online archive for scientific preprints in the fields of Mathematics, Physics and Computer Science, amongst others.

P. De Meo et al. / Information Sciences 222 (2013) 648–668 659

Author's personal copy

by the algorithm tend to the correct edge centrality values. However, we wonder if wrong choice in j may lead to sig-
nificantly different values of edge centralities. This question will be examined in Section 6.1.

R2 Is our approach actually capable of improving the modularity of the partitioning identified by a community detection
algorithm? To answer this question we executed the Louvain method, COPRA and OSLOM on the datasets specified
above in two configurations: in the former we directly applied these algorithms and computed the modularity Q they
achieved. In the latter, we pre-processed each of these datasets by running our WERW-Kpath algorithm. After that, we
re-applied LM, COPRA and OSLOM on the modified datasets and re-computed the modularity values. The obtained
results are discussed in Section 6.2.

R3 How good are the communities identified by combining the Louvain method, COPRA and OSLOM with our algorithms?
This task is hard because we should know in advance the actual community structure of a network and compare it
with that generated by each of these algorithms. Unfortunately, such an information is not usually available for
real-life networks. Therefore, we used the LFR benchmark [35], a software tool proposed to generate artificial net-
works whose structural features (and in particular the communities composing it) can be controlled. We applied
the three algorithms with and without the pre-processing step by means of WERW-Kpath and, in each configuration,
we compared the community structure detected by each algorithm with the actual one. To perform such a comparison
we used a parameter derived from Information Theory known as Normalized Mutual Information. The corresponding
results are presented in Section 6.3.

6.1. Analysis of the WERW-Kpath algorithm

In this section we study the distribution of edge centrality values computed by the WERW-Kpath algorithm. In detail, we
present the results of two experiments.

In the first experiment we executed our algorithm four times. In addition, we varied the value of j = 5, 10, 20. We aver-
aged the j-path centrality values at each iteration and we plotted, in Fig. 1, the edge centrality distribution; on the horizontal
axis we reported the identifier of each edge. Due to space limitation, we report only the results we obtained for four net-
works of Table 1: a small network (‘‘Wiki-Vote’’), two medium-sized networks (‘‘Cit-HepTh’’ and ‘‘Facebook’’) and a large-
scale network (‘‘SocialGraph’’). Fig. 1 exploits a logarithmic scale.

The usage of a logarithmic scale highlights a heavy-tailed distribution for the centrality values. This means that few edges
(which are actually the most central edges in a social network) are frequently selected by the WERW-KPath algorithm and,

10-5

10-4

10-3

10-2

100 101 102 103 104 105 106

K
-
p
a
t
h

e
d
g
e

c
e
n
t
r
a
l
i
t
y

Edge

Wiki Vote K-path centrality
 distribution

K=5
K=10
K=20

10-5

10-4

10-3

100 101 102 103 104 105 106

K
-
p
a
t
h

e
d
g
e

c
e
n
t
r
a
l
i
t
y

Edge

Cit-HepTh K-path centrality
 distribution

K=5
K=10
K=20

10-6

10-5

10-4

100 101 102 103 104 105 106 107

K
-
p
a
t
h

e
d
g
e

c
e
n
t
r
a
l
i
t
y

Edge

Facebook K-path centrality
 distribution

K=5
K=10
K=20

10-6

10-5

10-4

100 101 102 103 104 105 106 107

K
-
p
a
t
h

e
d
g
e

c
e
n
t
r
a
l
i
t
y

Edge

SocialGraph K-path centrality
 distribution

K=5
K=10
K=20

Fig. 1. j-paths centrality values distribution on different networks.

660 P. De Meo et al. / Information Sciences 222 (2013) 648–668

Author's personal copy

therefore, their centrality index is frequently updated. By contrast, many edges are seldom selected and, therefore, their cen-
trality index is rarely increased. Heavy-tailed distributions of classic centrality measures, such as the edge betweeness cen-
trality, have been observed in different real-world networks [23].

A further and important result emerging from Fig. 1 is that j-path edge centrality, when j is fixed, follows the same trend
for all the considered datasets. This means that the size of the input dataset does not influence the output of the WERW-
Kpath algorithm.

In the second experiment, we studied how the value of j impacted on edge centrality. In detail, we considered the data-
sets separately and applied the WERW-Kpath algorithm with j = 5, 10, 20. After that, for a fixed value of j-path edge cen-
trality L, we computed the probability PðLÞ of finding an edge with such a centrality value. The corresponding results are
plotted in Fig. 2 for the same datasets. As in the previous case, for each plot we adopted a log–log scale.

The analysis of this figure highlights some relevant facts. First of all, the heavy-tailed distribution in edge centrality
emerges in presence of different values of j. In other words, if we use different values of j the centrality indexes may change
(see below); however, as emerges from Fig. 1, for each considered dataset, the curves representing j-path centrality values
resemble straight and parallel lines with the exception of the latest part. This implies that, for a fixed value of j, say j = 5, an
edge �e will have a particular centrality score. If j grows from 5 to 10 and, then, from 10 to 20, the centrality of �e will be in-
creased by a constant factor.

This leads us to hypothesize that a form of correlation should exist between the values of Lj(e) for different values of j. To
check whether this hypothesis were true, we performed a further experiment. In detail, we considered the above mentioned
datasets and applied twice our algorithm on each of these datasets with two different values of j, say jX and jY. Let us denote
as DX (resp., DY) the distribution of edge centralities computed when j = jX (resp., j = jX). We compared DX and DY and, to
this purpose, we computed the Pearson Correlation coefficient qjX ;jY

of DX and DY. The Pearson Correlation Coefficient as-
sumes that a linear relationship exists between DX and DY; such an assumption may be false because, in our scenario, we
do not know if a linear relationship between DX and DY exists and this could make the process of comparing DX and DY unre-
liable. For instance, if DX and DY were strongly correlated but both DX and DY would contain some outliers, this would lead to
significantly low values of qjX ;jY

and, in such a case, we should erroneously conclude that DX and DY are weakly correlated.
Due to these reasons, to make our analysis more robust, we computed two further metrics: the Spearman’s rank correlation
coefficient rjX ;jY and Kendall’s tau rank correlation coefficient sjX ;jY . Both these parameters are useful to determine whether
two variables (in our case DX and DY) are related by a monotonic function, i.e., they are useful to identify to what extent when
the former variable tend to increase the latter tends to increase too or to decrease.

10-5

10-4

10-3

10-2

10-1

100

10-5 10-4 10-3 10-2

P
(
x
)

K-path edge centrality

Wiki Vote K-path probability
 distribution

K=5
K=10
K=20

10-6

10-5

10-4

10-3

10-2

10-1

100

10-5 10-4 10-3

P
(
x
)

K-path edge centrality

Cit-HepTh K-path probability
 distribution

K=5
K=10
K=20

10-6

10-5

10-4

10-3

10-2

10-1

100

10-6 10-5 10-4

P
(
x
)

K-path edge centrality

Facebook K-path probability
 distribution

K=5
K=10
K=20

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

10-6 10-5 10-4

P
(
x
)

K-path edge centrality

SocialGraph K-path probability
 distribution

K=5
K=10
K=20

Fig. 2. Effect of different j = 5, 10, 20 on networks described in Table 1.

P. De Meo et al. / Information Sciences 222 (2013) 648–668 661

Author's personal copy

The Spearman’s rank correlation coefficient is computed by converting the edge centralities into rank values (in such a
way as to the edge with the highest centrality is ranked as first); subsequently, the Pearson Correlation Coefficient is com-
puted on the rank values. The Spearma’s rank correlation coefficient ranges in [�1,1].

The definition of the Kendall’s tau rank correlation coefficient is slightly complex; to this purpose, let us consider a pair of
edges ei and ej and let us denote as LjX ðeiÞ (resp., LjX ðejÞ) and LjY ðeiÞ (resp., LjY ðejÞ) their centralities computed when j = jX

and j = jY. The pairs hLjX ðeiÞ; LjX ðejÞi and hLjY ðeiÞ; LjY ðejÞi are said concordant if both LjX ðeiÞ > LjY ðeiÞ and LjX ðejÞ > LjY ðejÞ or
LjX ðeiÞ < LjY ðeiÞ and LjX ðejÞ < LjY ðejÞ. The same pairs are said discordant if both LjX ðeiÞ > LjY ðeiÞ and LjX ðejÞ < LjY ðejÞ or
LjX ðeiÞ < LjY ðeiÞ and LjX ðejÞ > LjY ðejÞ. The Kendall’s tau coefficient is equal to the ratio of the difference between the number
of concordant and discordant pairs to the total number of pairs in distributions DX and DY and it ranges in the real interval
[�1,1].

In Table 2 we report the outcomes of our experiment. Due to space limitations, we report four out of the nine datasets
reported in Table 1 – the same of the previous experiment, namely ‘‘Wiki-vote’’, ‘‘Cit-HepTh’’, ‘‘Facebook’’ and ‘‘SocialGraph’’.
From Table 2, it emerges a strong agreement among the values returned by qjX ;jY

, rjX ;jY and sjX ;jY . In detail, all the metrics
introduced above clearly indicate that there is a strong and positive correlation between DX and DY for all datasets and for any
pair of values jX and jY. Such a result highlights a nice property of our algorithm: the agreement between the two rankings
produced for different values jX and jY is the same; as a consequence, the edge having the highest centrality value when
j = jX will be also the edge with the highest centrality value when j = jY. Therefore, our algorithm is robust against varia-
tions in the value of j in the and we can safely conclude that different values of j do not alter the distribution of edge
centralities.

As previously observed, if j increases, the centrality index of an edge increases too (or, at least, it does not decrease). This
has an intuitive explanation: if j increases, the WERW-KPath algorithm manages longer paths and, therefore, the chance that
an edge is selected multiple times increases too. Each time an edge is selected, WERW-Kpath increases its weight by 1 and
this increases the edge centrality values. Fig. 1 show that if we augment j, the distance between the highest and the lowest
centrality value increase too. Therefore, in presence of low values of j, edge centrality indexes tend to edge flatten in a small
interval and it is harder to distinguish high centrality edges from low centrality ones. Vice versa, in presence of high values of
j, we are able to better discriminate edges with high centrality from edges with low centrality.

As a consequence, on one hand, it would be fine to fix j as high as possible. On the other hand, since the complexity of our
algorithm is O(jjEj), large values of j negatively impact on the performance of our algorithm.

A good trade-off (suggested by the experiments showed in this section) is to fix j = 20.

6.2. Assessing the modularity

In this section we analyze the modularity of the partitions achieved by Louvain method, COPRA and OSLOM with and
without the support of the WERW-Kpath algorithm.

The experiment has been carried out as follows: in a first stage we considered the original datasets (which can be re-
garded as unweighted graphs) and applied the Louvain method, COPRA and OSLOM on them. We computed the modularity
achieved by each algorithm on each of these datasets. To make the notation simple we shall use the labels LM UW, CP UW
and OS UW to denote, respectively, the Louvain method, COPRA and OSLOM applied on the unweighted, original, datasets.

In the second stage we pre-processed each of the nine datasets reported in Table 1 by applying the WERW-Kpath algo-
rithm with j = 20. Therefore, each graph was transformed into a weighted graph in which the weight of an edge was equal to
its edge centrality. We applied again the three algorithms6 on the aforementioned datasets after adopting our strategy and we

Table 2
Pearson ðqjX ;jY

Þ, Spearman ðrjX ;jY Þ and Kendall tau ðsjX ;jY Þ rank correlation coefficients for pairs of distributions in Fig. 2 (the p-value for all values is less than
10�10).

Network jX jY qjX ;jY
rjX ;jY sjX ;jY

Wiki-vote 5 10 0.9916 0.9897 0.9569
10 20 0.9765 0.9976 0.9792
20 5 0.9701 0.9925 0.9531

Cit-HepTh 5 10 0.9896 0.9907 0.9611
10 20 0.9861 0.9971 0.9781
20 5 0.9664 0.9924 0.9924

Facebook 5 10 0.9874 0.9810 0.9436
10 20 0.9931 0.9952 0.9714
20 5 0.9848 0.9858 0.9379

SocialGraph 5 10 0.9803 0.9772 0.9366
10 20 0.9924 0.9910 0.9608
20 5 0.9834 0.9811 0.9288

6 Clearly, in this case we adopted those versions of the algorithms designed for weighted networks.

662 P. De Meo et al. / Information Sciences 222 (2013) 648–668

Author's personal copy

computed the achieved modularity. Similarly to previous case, we shall use the label LM W, CP W and OS W to denote, respec-
tively, the Louvain method, COPRA and OSLOM applied on weighted, pre-processed, datasets.

The corresponding results are reported in Table 3. From the analysis of this table we conclude that:

1. As for LM, the usage of the WERW-Kpath algorithm always yields better results than using the original LM alone. In par-
ticular, the improvement of modularity is up 17.3%. It is interesting to observe that in the large-scale dataset (i.e., ‘‘Social-
Graph’’) a very high value of modularity was achieved by applying LM alone (Q = 0.891). Neverthless, the WERW-KPath
algorithm gives room for a further improvement (Q = 0.912). This result is interesting because WERW-Kpath can yield
relevant improvements also on large datasets for which the optimization of modularity becomes increasingly hard.

2. As for COPRA, there are two datasets (namely ‘‘CA-HepTh’’ and ‘‘CA-CondMat’’) in which the performance of the
community detection algorithm in conjunction with the WERW-Kpath algorithm produce a worse modularity than that
achieved by COPRA alone. In all other cases, we report an increase of Q ranging from 1.37% (‘‘Facebook’’ dataset) to 9.02%
(‘‘Cit-HepTh’’ dataset). The combination of COPRA with the WERW-Kpath algorithm seems favorable for networks of
medium size but it deteriorates for small and large networks. For instance, the increase of Q is around 1.73% for the
dataset called ‘‘Wiki-Vote’’ (7,115 vertices and 103,689 edges) and, as previously pointed out, 1.37% for the ‘‘Facebook’’
dataset (63,731 vertices and 1,545,684 edges). Such an improvement is better for ‘‘SocialGraph’’ because we pass from
Q = 0.197 achieved by COPRA alone to Q = 0.203 with a gain of 3.04%. In such a case, however, the modularity achieved
by COPRA is quite low in comparison with that of Louvain method and OSLOM and, therefore, such an improvement is not
particularly relevant.

3. As for OSLOM, the improvements associated with the adoption of our method is less evident. In fact, we can observe that
for six datasets out of nine the joint usage of the WERW-KPath algorithm with OSLOM produce better results than those
we would achieve if we would apply OSLOM alone. The improvement of Q ranges from 2.8% to 7% (excluding the excep-
tional +17.4% for the dataset ‘‘Wiki-Vote’’). To explain these results we can observe that OSLOM does not target at max-
imizing the network modularity but it relies on the idea that vertices can be ranked according to their likelihood of
belonging to a community. Therefore, it is not surprising that the network modularity achieved by OSLOM is significantly
less than that achieved by the Louvain method. However, it is worth observing that the gain in modularity deriving from
the usage of the WERW-Kpath algorithm is almost uniform: for instance, the increase of Q due to the coupling of WERW-
Kpath with OSLOM is 7% for the dataset called ‘‘CA-AstroPh’’, 6.21% for the dataset called ‘‘CA-CondMat’’, 6.66% for the
dataset called ‘‘Cit-HepTh’’ and 4.82% for the dataset called ‘‘SocialGraph’’. This implies that the joint usage of WERW-
KPath is not influenced (or at least is weakly influenced) by the size of the input dataset.

The results reported in this section indicates that some community detection methods (like LM) significantly benefit from
our edge weighting strategies; for COPRA and OSLOM our method brings some advantage but the improvement in modular-
ity is less evident than in LM. Such a behavior can be explained in terms of the properties and behavior of the LM, COPRA and
OSLOM algorithms.

As emerges from Section 5.1, LM tries to optimize in a greedy fashion the modularity function Q defined in Eq. (1). The Q

function is the sum of terms of the form Dij ¼ Aij �
ki �kj

2m

� �
dðCi;CjÞ. Let us consider a pair of vertices i and j and assume that an

edge linking them exists. By exploiting LM in conjunction with our WERW-Kpath algorithm, Aij is a real number in [0,1]; if
the WERW-Kpath algorithm is not applied, Aij 2 0,1 and it equals 1 if and only if there is an edge linking i and j. In such a case

the term Dij reads cDij ¼ 1� ki �kj

2m

� �
dðCi;CjÞ. Therefore, the less ki (resp., kj) the higher cDij : this implies that LM tends to put in

the same community vertices at low degree even if such a choice could be not optimal at the global level. By contrast, the
usage of non-binary weights on edges provides a higher level of flexibility to the algorithm and this ultimately explains the
improvements in the values of Q.

As for COPRA and OSLOM, the discussion proposed in Sections 5.2 and 5.3 explains that these algorithms deeply differ
each other. Despite these deep differences, they share a relevant similarity: in both of them, a vertex v is assigned to a com-
munity depending on the fact that a large part of the neighboring vertices of v belong or not to that community. So, for in-

Table 3
Network Modularity of Louvain method, COPRA and OSLOM with and without our approach (j = 20). Improved values are highlighted in bold, reduced values
are emphasized and the improvement/loss is reported in brackets.

Network LM UW LM W CP UW CP W OS UW OS W

Wiki-Vote 0.423 0.445 [+5.2%] 0.693 0.705 [+1.7%] 0.316 0.371 [+17.4%]
CA-HepTh 0.772 0.806 [+4.4%] 0.768 0.649 [�18.4%] 0.653 0.632 [�3.3%]
CA-HepPh 0.656 0.760 [+15.8%] 0.754 0.777 [+3.1%] 0.675 0.669 [�0.01%]
CA-AstroPh 0.627 0.663 [+5.7%] 0.577 0.614 [+6.4%] 0.596 0.638 [+7.0%]
CA-CondMat 0.731 0.768 [+5.1%] 0.616 0.515 [�19.6%] 0.692 0.735 [+6.2%]
Cit-HepTh 0.642 0.644 [+0.1%] 0.665 0.725 [+9.0%] 0.433 0.462 [+6.7%]
Email-Enron 0.602 0.706 [+17.3%] 0.768 0.799 [+4.0%] 0.449 0.432 [�4.0%]
Facebook 0.626 0.664 [+6.1%] 0.799 0.810 [+1.4%] 0.391 0.402 [+2.8%]
SocialGraph 0.891 0.912 [+2.4%] 0.197 0.203 [+3.0%] 0.456 0.478 [+4.8%]

P. De Meo et al. / Information Sciences 222 (2013) 648–668 663

Author's personal copy

stance, in COPRA we compute the belonging coefficient of v to a community C depending on the belonging coefficient to C of
its neighboring vertices. In OSLOM, we compute the number of links joining v with vertices located inside C and if such a
number is higher than that we would expect, we decide to put v in C. In both COPRA and OSLOM, the criterium to decide
if a vertex has to be included in a community depends on the number of its neighboring vertices belonging to that commu-
nity and, ultimately, on the number of edges linking v with vertices located in C. Therefore, weights on edges have a small (or
negligible) influence in deciding to assign a vertex to a community.

6.3. Quality assessment

In this section we analyze the quality of the communities detected by our approach in conjunction with LM, COPRA and
OSLOM.

To assess the quality of the results, we adopted a measure called Normalized Mutual Information-NMI proposed by Danon
et al. in 2005 [9] which is rooted in Information Theory. Such a measure assumes that, given a graph G, a ground truth is avail-
able to verify what are the communities (said real communities) in G and what are their features. Let us denote as A the true
community structure of G and suppose that G consist of cA communities. Let us consider a community detection algorithm A.
Let us run A on G and assume that it identifies a community structure B consisting of cB communities. We define a cA � cB

matrix–said confusion matrix–CM such that each row of CM corresponds to a community in A, whereas each column of CM is
associated with a community in B. The generic element CMij is equal to the number of elements of the real ith community
which are also present in the jth community found by the algorithm. Starting by this definition, the normalized mutual infor-
mation is defined as

NMIðA;BÞ ¼
�2
XcA

i¼1

PcB
j¼1Nij log NijN

Ni�N�j

� �
PcA

i¼1Ni� log Ni�
N

� �
þ
PcB

j¼1N�j log N�j
N

� � ð11Þ

being Ni� (resp., N�j) the sum of the elements in the ith row (resp., jth column) of the confusion matrix. If the algorithm A

would work perfectly, then for each found community j, it would exist a real community i exactly coinciding with j. In such
a case, it is possible to show that NMI(A,B) is exactly equal to 1 [9]. By contrast, if the communities detected by A are totally
independent of the real communities (e.g. if we assume to put all the nodes of the network into a single community) then it
is possible to show that the NMI is equal to 0. The NMI, therefore, ranges from 0 to 1 and the higher the value, the better the
algorithm works.

The computation of NMI is however challenging for real-life networks because no ground truth is usually available to as-
sess what are the communities in G and what are their features. Therefore, to perform our tests, we need to consider a set of
artificially generated networks whose structural properties are compliant with those existing in real networks.

A tool for generating artificial networks resembling real ones has been proposed in [35] and it has been exploited in our
tests. The user is required to provide the following parameters to generate artificial networks: (i) Number of Vertices and
Average Vertex Degree. The user is allowed to specify the number N of vertices in the network as well as the average degree
h ki of each vertex. (ii) Power Law exponent in vertex degree distribution. The user specifies a parameter c such that the ver-
tex degree distribution follows a power law such as P(k) / k�c. In addition, the average degree of a vertex is fixed to be equal
to hki. (iii) Power Law exponent in community size distribution. The user specifies a parameter b and communities are gen-
erated so that the size of each community (i.e., the number of vertices composing it) follows a power law defined as
f(x) / x�b. The sum of the sizes of all the communities is constrained to be equal to N. In addition, the procedure for gener-
ating communities ensures that any node is included in at least a community, independently of its degree. (iv) Mixing
parameter. The user specifies a parameter l 2 (0,1) such that each vertex shares a fraction 1 � l of its edges with vertices
outside its community and l edges with vertices residing in its community. The parameter l is called mixing parameter. Note
that the mixing parameter assignment l = 0.5 represents the tipping point beyond which the communities are no longer de-
fined in the strong sense, that is that each vertex has more neighbors in the community to which it is assigned, rather than
outside.

In our tests we adopted the same configuration reported in [35], i.e.,: (i) N = 1000 vertices; (ii) four pair of values for c and
b were considered, namely: (c,b) = (2,1), (2,2), (3,1), (3,2); (iii) three values of average degree were considered, namely
hki = 15,20,25; (iv) six values of l were considered, namely l = 0.1, . . ., 0.6. This allowed us to generate an overall number
of 4 � 3 � 6 = 72 artificial test networks.

We computed the NMI achieved by applying LM, COPRA and OSLOM, on the unweighted networks as they were generated
by the benchmark, averaging obtained results over 10 runs of each algorithm. Therefore, we applied the same algorithms to
the weighted networks after the adoption of our network weighting strategy, once again averaging results over 10 runs. As
suggested in Section 6.2, we fixed j = 20 to compute edge centralities.

The achieved results are reported in Table 4 for hki = 20. We also considered other values for average degree, namely
hki = 15 and hki = 25 and the results we obtained were quite similar each other and inline with those obtained when
hki = 20; therefore, due to space limitation, we report in Table 4 only the NMI values obtained when hki = 20.

From the analysis of this table, we can draw the following conclusions:

664 P. De Meo et al. / Information Sciences 222 (2013) 648–668

Author's personal copy

1. If l is low (i.e., l = 0.1 or l = 0.2), all the three approaches achieve a high NMI both with and without our weighting strat-
egy. By contrast, for large values of l (for example l = 0.6), the NMI deteriorates (especially for COPRA). In particular, if
l > 0.5 a vertex has more neighbors outside the community to which it is assigned than in the community itself. Among
the three methods, COPRA suffers the increase of l more than Louvain method and OSLOM. In fact, if l is around 0.1–0.2,
the NMI achieved by COPRA is in line with that of Louvain method and in general it is quite high (between 0.849 and
0.917) but if l tends to 0.6 its NMI decreases of about 90% (and its values are around 0.018–0.023). This depends on
the features of COPRA: in fact, a vertex v is assigned to a community C if most of its neighbors already belong to C. Of
course, such an assignment is problematic for large values of l because, as already observed, the neighbors of v could
be equally split across multiple communities.

2. It is worth observing that coupling Louvain method, COPRA and OSLOM with our strategy generally provides also an
increase of NMI. To assess if the improvement provided by our method is significant or not, we carried out a t-test.
We considered a p-value lesser than 0.001 to determine, over 10 runs of each algorithm (df = 9), if the obtained increment
was statistically significant or not. According to this test, significant increments are reported in bold in Table 4. It emerges
that the increase of NMI is generally extremely significant pairing the Louvain method with our weighting strategy (in
particular, for c = 2 this choice is able to guarantee significant improvements with low values of l, while for c = 3 the
increment is obtained also for high values of l.) Regarding the choice of COPRA paired with our strategy, we also obtain
statistically significant improvements of NMI with all assignments of c and b, in particular with medium/high values of l.
Differently, by considering OSLOM, the only extremely significant improvement in NMI is obtained while considering
l = 0.6, but this increase is neat and appears in all possible configurations of c and b.

3. For a fixed value of c and l, we observe that the NMI achieved by the Louvain method decreases if b ranges from 1 to 2. If
b gets larger, there are few communities containing a large number of vertices and a large number of communities which
have roughly the same size because they contain few vertices. These communities are hard to find due to the so-called
resolution limit [19]: in particular, it is possible to show that community detection algorithms based on the principle of
modularity maximization may fail to find communities containing less than

ffiffiffiffiffiffiffiffiffiffiffi
jEj=2

p
edges, being jEj the number of edges

in the entire network.
However, a big result emerges from Table 4: if we couple LM with the WERW-Kpath algorithm then the decay in NMI is
softened. This depends on the different definition of the modularity function that the Louvain method attempts to
optimize: in the case of weighted network, in fact, the term Aij is no longer 0 or 1 depending if an edge links the vertices
i and j but it is a real number in [0,1] defining the strength of their links. The definition of the Q function, therefore, is
more precise and this allows higher values of Q to be achieved.

Table 4
Louvain method (LM), COPRA (CP) and OSLOM (OS) NMI performance for artificial networks with average degree hki = 20. Statistically significant improvements
(p-value <0.001) are highlighted in bold.

Method l = 0.1 0.2 0.3 0.4 0.5 0.6

c = 2, b = 1
LM UW 0.917 0.853 0.769 0.732 0.591 0.486
LM W 0.931 0.882 0.817 0.789 0.599 0.444
CP UW 0.868 0.901 0.841 0.868 0.691 0.021
CP W 0.879 0.900 0.905 0.856 0.846 0.021
OS UW 0.699 0.703 0.705 0.694 0.658 0.438
OS W 0.700 0.704 0.707 0.695 0.668 0.501

c = 2, b = 2
LM UW 0.815 0.633 0.664 0.428 0.503 0.334
LM W 0.886 0.704 0.632 0.519 0.444 0.377
CP UW 0.849 0.893 0.838 0.809 0.726 0.028
CP W 0.904 0.852 0.886 0.759 0.738 0.028
OS UW 0.669 0.637 0.629 0.633 0.583 0.462
OS W 0.669 0.637 0.637 0.629 0.602 0.505

c = 3, b = 1
LM UW 0.973 0.867 0.800 0.773 0.677 0.527
LM W 0.978 0.872 0.806 0.739 0.712 0.404
CP UW 0.917 0.888 0.876 0.875 0.727 0.018
CP W 0.927 0.892 0.892 0.913 0.786 0.018
OS UW 0.741 0.711 0.700 0.712 0.708 0.299
OS W 0.741 0.712 0.700 0.712 0.711 0.415

c = 3, b = 2
LM UW 0.936 0.788 0.692 0.563 0.532 0.411
LM W 0.947 0.745 0.749 0.633 0.584 0.405
CP UW 0.881 0.892 0.900 0.885 0.844 0.023
CP W 0.911 0.875 0.899 0.889 0.770 0.023
OS UW 0.697 0.672 0.665 0.671 0.652 0.397
OS W 0.697 0.672 0.665 0.672 0.652 0.538

P. De Meo et al. / Information Sciences 222 (2013) 648–668 665

Author's personal copy

7. Related works

In this section we describe some works related to our research.
First of all, we point out that an early version of the WERW-Kpath algorithm discussed appeared in [10]. We brought in

some little modifications to the original WERW-KPath algorithm to achieve more solid results from a theoretical standpoint
on the behavior of the algorithms itself. In detail, in the algorithm presented in [10] the weight x(e) of e is proportional to the
number of times e is selected by the algorithm. This weight is interpreted as the edge centrality of e, i.e., we set bLkðeÞ ¼ xðeÞ:
therefore, bLkðeÞ represents the frequency of selecting e by means of random simple paths consisting of at most j edges. By
contrast, in this paper, the weight x(e) of e counts how many times e is selected and the edge centrality bLkðeÞ returned by the
algorithm is equal to x(e) divided by the number of trials q performed by the algorithm. In this case, bLkðeÞ represents the
probability of selecting e. This has relevant practical consequences. In fact, in [10], we were able to prove that the edge
x(e) lies in a closed interval of the form [n1 Lj(e),n2Lj(e)], being xi1 and xi2 two real constants. However, we were not able
to provide an estimation of n1 and n2, and, then, to quantify the approximation error associated with the estimation of Lj(e).
In addition, we were not able to relate the number q of trials carried out by the algorithm to the accuracy of the algorithm in
approximating the actual edge centrality values. Some design consideration (later supported by experimental trials) sug-
gested us to set q = jEj � 1. Both these limitations have been addressed in the current version of the algorithm by means
of Theorem 4.2 and Corollary 4.3. In fact, by means of Theorem 4.2, we provide tight bounds on the probability that
jbLjðeÞ � LjðeÞj exceeds a given threshold and, by means of Corollary 4.3 and the subsequent reasoning we showed that, in
case of real networks, a number of iterations equal to the number of vertices in the network was enough to provide accurate
results.

However, the main novelty introduced in this paper is that we showed how to apply the WERW-Kpath algorithm to a
non-trivial problem, i.e., the task of finding communities in networks. To the best of our knowledge, there are few works
proposing to weight edges in a network to improve the quality of the community detection process.

One of the first approach to weighting edges was proposed in [33]. In that paper, the authors propose a modified version
of the Girvan–Newman algorithm called Newman Fast. In particular, given an unweighted, undirected graph G, each edge eij

connecting a pair of vertices i and j is weighted. The weight of eij is the normalized product of two terms: the former is the
inverse of the edge betweenness associated with eij, whereas the latter (called common neighbor ratio) is the normalized
number of vertices which are linked to both i and j. After that weighting step has been carried out, the Newman Fast algo-
rithm attempts to minimize the function eQ defined as

eQ ¼X
l

ðell � a2
l Þ

The authors define elp equal to half of the sum of the weights of the edges that start from vertices in community l and end
in vertices located in community p over the sum of the weights of all the edges in the network. Therefore, ell is the sum of the
weights of the edges contained within the community l. The parameter al is defined as al ¼

P
kelk. The algorithm proceeds

adopting a greedy strategy to maximize eQ : initially, each vertex forms a community and communities are merged so that
to increase the value of eQ . The process stops when no further improvement of eQ can be achieved or all the vertices have
been inserted into a single community.

An improvement of the approach of [33] was presented, by the same authors, in [34]. In that paper the authors suggested
a slightly different weighting schema in which the contributions of edge betweenness and common neighbor ratio are com-
bined through two weights a and b. The authors suggest to tune a and b so that to maximize the variance in edge
distribution.

There are some differences between our approach and that of [33]. In detail, in the approach of [33], the edge weight is the
product of two terms: the former is the edge betweenness, which is a global parameter (i.e., its computation requires to know
the whole network topology) and the common neighbor ratio, which is a local parameter (i.e., it can be computed by knowing
only the neighbors of two vertices). Our j-path centrality, instead, lies between local and global measures because it can be
computed by considering random paths of length at most j. Therefore, if j is kept low (resp., high) the edge centrality con-
figure itself as a local (resp., global) measure. As a further difference, the edge weighting procedure outlined in [33,34] has
been used to design a modified version of Q and a greedy algorithm to optimize it. By contrast, in our approach we do not
focus on any specific community detection algorithm and, therefore, our approach can be used also with algorithms like CO-
PRA or OSLOM which do not attempt at maximizing modularity. In general, our strategy can be paired up with any commu-
nity detection algorithm handling weighted networks.

A further, interesting study, is presented in [2]. In that paper the authors studied the aforementioned problem of resolu-
tion limit [19]. In [19], the authors showed that the size of the smallest community which can be detected is

ffiffiffiffiffiffiffiffiffiffiffi
jEj=2

p
, being jEj

the number of edges in the network. In [2] the authors pointed out that by weighting a network the resolution limit amounts
to

ffiffiffiffiffiffiffiffiffiffiffiffiffi
We=2

p
, being W the sum of the weights in the network and e the maximum weight of an edge connecting vertices located

in two different communities. Therefore, a wise choice of weights can significantly lower the resolution limit. The authors
suggested a weighting schema in which the weight of an edge depends on the number of cycles of length k containing that
edge, being k a fixed integer. The authors provides a modified version of the Clauset, Newman and Moore algorithm [6] capa-
ble of taking into account edge weights.

666 P. De Meo et al. / Information Sciences 222 (2013) 648–668

Author's personal copy

Our approach differs from that proposed in [2]. In fact, we leverage on random walks to compute edge weight, whereas
the approach of [2] relies on the identification of cycles of length k. Unfortunately, the identification of these cycles can be
very time expensive as soon as k gets large. On the contrary, we proved both theoretically and experimentally that our strat-
egy scales very well also if applied to large networks.

8. Conclusions

In this paper we discussed an algorithm, called WERW-Kpath, to compute edge centralities in networks and we showed
that the strategy of weighting edges can generate a significant improvement in the process of discovering communities. The
WERW-Kpath algorithm exploits random walks of bounded length to compute edge centralities. We provided a theoretical
analysis of the behavior of the WERW-Kpath algorithm and we showed how to use it in conjunction with already existing
community detection algorithm. We studied the merits and weaknesses of the WERW-Kpath algorithm by coupling it with
three state-of-the-art algorithms, namely Louvain Method, COPRA and OSLOM. Experiments carried out on real networks
show that our approach is able to improve the modularity of the community structure detected by the algorithms mentioned
above and the improvement up to 17.3%. We carried out also experiments on artificial networks: experiments showed that
coupling Louvain method, COPRA and OSLOM with our strategy generally provides an increase of the Normalized Mutual
Information.

As for future work, we plan to implement a multi-threaded version of the WERW-Kpath algorithm so that we can sim-
ulate multiple random walks on the network in parallel. We plan to experimentally study the computational improvements
deriving from this choice. A further research direction includes the creation of a friendship recommender system which sug-
gests new possible connections to the users of a very large-scale online social network, based on the communities they be-
long to.

References

[1] T. Alahakoon, R. Tripathi, N. Kourtellis, R. Simha, A. Iamnitchi. K-path centrality: a new centrality measure in social networks, in: Proceedings of 4th
Workshop on Social Network Systems, 2011, pp. 1–6.

[2] J. Berry, B. Hendrickson, R. LaViolette, C. Phillips, Tolerating the community detection resolution limit with edge weighting, Physical Review E 83 (5)
(2011) 056119.

[3] V. Blondel, J. Guillaume, R. Lambiotte, E. Lefebvre, Fast unfolding of communities in large networks, Journal of Statistical Mechanics: Theory and
Experiment (2008) P10008.

[4] U. Brandes, A faster algorithm for betweenness centrality, Journal of Mathematical Sociology 25 (2) (2011) 163–177.
[5] U. Brandes, D. Delling, M. Gaertler, R. Görke, M. Hoefer, Z. Nikoloski, D. Wagner, On finding graph clusterings with maximum modularity, in: Graph-

Theoretic Concepts in Computer Science, 2007, pp. 121–132.
[6] A. Clauset, M. Newman, C. Moore, Finding community structure in very large networks, Physical Review E 70 (6) (2004) 66111.
[7] V. Chua, J. Madej, B. Wellmann, Personal communities: the world according to me, The SAGE Handbook of Social Network Analysis, Sage Publications

Ltd., California, 2005.
[8] T. Cormen, C. Leiserson, R. Rivest, C. Stein, Introduction to Algorithms, The MIT Press, 2001.
[9] L. Danon, A. Diaz-Guilera, J. Duch, A. Arenas, Comparing community structure identification, Journal of Statistical Mechanics: Theory and Experiment

(2005) P09008.
[10] P. De Meo, E. Ferrara, G. Fiumara, A. Ricciardello, A novel measure of edge centrality in social networks, Knowledge-Based Systems 30 (2012) 136–150.
[11] P. De Meo, E. Ferrara, G. Fiumara, A. Provetti, Generalized Louvain method for community detection in large networks, in: Proceedings of the 11th

International Conference on Intelligent Systems Design and Applications, 2011, pp. 88–93.
[12] P. De Meo, A. Nocera, G. Terracina, D. Ursino, Recommendation of similar users, resources and social networks in a social internetworking scenario,

Information Sciences 181 (7) (2011) 1285–1305.
[13] J. Duch, A. Arenas, Community detection in complex networks using extremal optimization, Physical Review E 72 (2) (2005) 27104.
[14] R.I.M. Dunbar, Neocortex size as a constraint on group size in primates, Journal of Human Evolution 22 (6) (1992) 469–493.
[15] C. Durugbo, W. Hutabarat, A. Tiwari, J. Alcock, Modelling collaboration using complex networks, Information Sciences 181 (15) (2011) 3143–3161.
[16] E. Ferrara, A Large-Scale Community Structure Analysis in Facebook, 2012, arxiv:1106.2503v4.
[17] E. Ferrara, Community structure discovery in Facebook, International Journal of Social Network Mining 1 (2012) 67–90.
[18] S. Fortunato, Community detection in graphs, Physics Reports 486 (3–5) (2010) 75–174.
[19] S. Fortunato, M. Barthélemy, Resolution limit in community detection, Proceedings of the National Academy of Sciences 104 (1) (2007) 36.
[20] S. Fortunato, V. Latora, M. Marchiori, Method to find community structures based on information centrality, Physical Review E 70 (5) (2004) 056104.
[21] P. Grabowicz, J. Ramasco, E. Moro, J.Pujol.V. Eguiluz, Social features of online networks: the strength of intermediary ties in online social media, PloS

One 7 (2012) e29358.
[22] N. Friedkin, Horizons of observability and limits of informal control in organizations, Social Forces 62 (1) (1983) 55–77.
[23] M. Girvan, M. Newman, Community structure in social and biological networks, Proceedings of the National Academy of Sciences 99 (12) (2002) 7821.
[24] M. Gjoka, M. Kurant, C. Butts, A. Markopoulou. Walking in Facebook: A case study of unbiased sampling of osns, in: INFOCOM, 2010 Proceedings IEEE,

IEEE, 2010, pp. 1–9.
[25] S. Gregory, An algorithm to find overlapping community structure in networks, Knowledge Discovery in Databases: PKDD 2007 (2007) 91–102.
[26] S. Grunwald, A. Speer, J. Ackermann, I. Koch, Petri net modelling of gene regulation of the duchenne muscular dystrophy, Biosystems 92 (2) (2008)

189–205.
[27] R. Guimera, L.N. Amaral, Functional cartography of complex metabolic networks, Nature 433 (7028) (2005) 895–900.
[28] R. Guimera, M. Sales-Pardo, L. Amaral, Modularity from fluctuations in random graphs and complex networks, Physical Review E 70 (2) (2004) 025101.
[29] L. Hagen, A. Kahng, New spectral methods for ratio cut partitioning and clustering, IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems 11 (9) (2002) 1074–1085.
[30] J. Han, M. Kamber, Data Mining: Concepts and Techniques, second ed., Morgan Kaufman Publishers, 2006.
[31] W. Hoeffding, Probability inequalities for sums of bounded random variables, Journal of the American Statistical Association (1963) 13–30.
[32] R. Johnston, P. Charles, Social networks, geography and neighbourhood effects, The SAGE Handbook of Social Network Analysis, SAGE Publications,

California, 2005.
[33] A. Khadivi, A. Rad, M. Hasler, Community detection enhancement in networks using proper weighting and partial synchronization, in: Proceedings of

2010 IEEE International Symposium on Circuits and Systems ISCAS, IEEE, 2010, pp. 3777–3780.

P. De Meo et al. / Information Sciences 222 (2013) 648–668 667

Author's personal copy

[34] A. Khadivi, A. Rad, M. Hasler, Network community-detection enhancement by proper weighting, Physical Review E 83 (4) (2011) 046104.
[35] A. Lancichinetti, F. Radicchi, Benchmark graphs for testing community detection algorithms, Physical Review E 78 (4) (2008) 046110.
[36] A. Lancichinetti, F. Radicchi, J. Ramasco, S. Fortunato, Finding statistically significant communities in networks, PloS One 6 (4) (2011) e18961.
[37] J. Leskovec, C. Faloutsos, Sampling from large graphs, in: Proceedings of 12th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, 2006, pp. 631–636.
[38] Z. Li, S. Zhang, R. Wang, X. Zhang, L. Chen, Quantitative function for community detection, Physical Review E 77 (3) (2008) 036109.
[39] N. Lin, M. Dumin, Access to occupations through social ties, Social Networks 8 (4) (1986) 365–385.
[40] B. Mirkin, S. Nascimento, Additive spectral method for fuzzy cluster analysis of similarity data including community structure and affinity matrices,

Information Sciences 183 (1) (2012) 16–34.
[41] M. Newman, A measure of betweenness centrality based on random walks, Social networks 27 (1) (2005) 39–54.
[42] M. Newman, M. Girvan, Finding and evaluating community structure in networks, Physical Review E 69 (2) (2004) 26113.
[43] A. Ng, M. Jordan, Y. Weiss, On Spectral clustering: analysis and an algorithm, Advances in Neural Information Processing Systems 14 (2001).
[44] G. Palla, I. Derenyi, I. Farkas, T. Vicsek, Uncovering the overlapping community structure of complex networks in nature and society, Nature 435 (7043)

(2005) 814–818.
[45] M. Porter, J. Onnela, P. Mucha, Communities in networks, Notices of the American Mathematical Society 56 (9) (2009) 1082–1097.
[46] U. Raghavan, R. Albert, S. Kumara, Near linear time algorithm to detect community structures in large-scale networks, Physical Review E 76 (3) (2007)

036106.
[47] D. Shah, T. Zaman, Community detection in networks: the leader-follower algorithm, in: Proceedings of the Workshop on Networks Across Disciplines:

Theory and Applications, 2010, pp. 1–8.
[48] B. Viswanath, A. Mislove, M. Cha, K.P. Gummadi, On the evolution of user interaction in Facebook, in: Proceedings of the 2nd ACM SIGCOMM Workshop

on Social Networks, 2009.
[49] C. Von Mering, E. Zdobnov, S. Tsoka, F. Ciccarelli, J. Pereira-Leal, C. Ouzounis, P. Bork, Genome evolution reveals biochemical networks and functional

modules, Proceedings of the National Academy of Sciences 100 (26) (2003) 15428.
[50] Y. Wei, C. Cheng, Towards efficient hierarchical designs by ratio cut partitioning, in: Proceedings of the IEEE International Conference on Computer-

Aided Design, 1989, pp. 298–301.

668 P. De Meo et al. / Information Sciences 222 (2013) 648–668

