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Clustering networks play a key role in many scientific fields, from Biology to Sociology
and Computer Science. Some clustering approaches are called global because they exploit
knowledge about the whole network topology. Vice versa, so-called local methods require
only a partial knowledge of the network topology. Global approaches yield accurate results
but do not scale well on large networks; local approaches, vice versa, are less accurate but
computationally fast. We propose CONCLUDE (COmplex Network CLUster DEtection), a new
clustering method that couples the accuracy of global approaches with the scalability of
local methods. CONCLUDE generates random, non-backtracking walks of finite length to
compute the importance of each edge in keeping the network connected, i.e., its edge
centrality. Edge centralities allow for mapping vertices onto points of a Euclidean space and
compute all-pairs distances between vertices; those distances are then used to partition the
network into clusters.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In a network, the term community structure indicates the presence of groups of vertices called communities or clusters
such that there is a large number of edges connecting vertices inside the same community and few edges linking vertices
located in different clusters [17]. For a given network, represented by a graph G = 〈V , E〉 where V is the set of vertices
and E the set of edges, the community detection problem consists of finding a partition of the vertices in V of the form
C = {C1, . . . ,Cq} such that each Ci , 1 � i � q exhibits the community structure described above.

The detection of clusters in large graphs is becoming a central research problem in a variety of different areas including
VLSI design, parallel computing, computer vision and social network analysis [17]. Such an interest depends on the fact that
many real-world systems consist of separated modules that interact with each other. If modules are clearly identified, it
is then possible to understand the role each module plays in the overall behavioral dynamics of the system, and to study
how potential changes in the structure and functions of a module would impact the overall system. As an example, in the
biological domain community detection algorithms have been deployed to clarify the functioning of metabolic networks
[26] or to understand how some proteins interact in small groups (or subsystems) called ‘modules,’ or forming so-called
complexes [46]. In Computer Science and Sociology, community detection algorithms have been exploited to understand the
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social structures arising from the interactions of single individuals; this has relevant practical applications, for instance in
customer segmentation.

Early methods for finding communities were rooted in graph theory, e.g., the principle of maximum flow and minimum
cut [17]. The main limitation of these methods is their high computational cost, which restricts their applicability to toy
models or small instances (e.g., samples) of real-world networks.

Recently, attention is increasingly paid to spectral clustering methods [28,40,44,48], which strive to optimize suitable cost
functions. Empirical analysis provides evidence that spectral clustering methods are able to achieve excellent performance in
some domains, e.g., image segmentation. Most of the spectral clustering methods are parametrized to the desired number of
clusters, denoted by an integer k. In many cases, spectral clustering methods tend to produce clusters of (almost) equal size.
However, in a broad range of application domains, such features have been considered as serious drawbacks, especially since
often there is no available information to correctly tune k. In addition, the identification of equally-sized clusters contradicts
some well-known facts about real social networks: the size of communities greatly varies, ranging from few communities
gathering a large number of individuals, to many communities containing only few participants [8,9,41].

A breakthrough in community detection has been the introduction of a cost function called network modularity (or, in
short, modularity, usually denoted as Q ); it is based on the edge density in a graph for any candidate partition. In the latest
years, several algorithms that try to maximize Q have been designed, see, e.g., [4,8,14,37].

Empirical studies carried out by Newman and Girvan [37,39] on a wide variety of artificial and real networks highlighted
a correlation between high values of modularity and the actual community structure of a network. As a further empirical
result, Newman and Girvan proved that real-world networks endowed with a clear community structure have their Q
measure ranging from 0.3 to 0.7. That means that the task of maximizing Q is instrumental to disclose the community
structure of a network and this is perhaps the main reason for its widespread adoption and the success of approaches that
maximize modularity.

Unfortunately, the maximization of Q poses two main challenges. First of all, the Q function is defined over all the
vertices of the graph G and, therefore, to maximize it we should take into account the whole network topology. Approaches
based on the knowledge of the whole network structure are defined as global approaches. Among them, we cite the Girvan–
Newman algorithm [21] (which is to the best of our knowledge the first algorithm that attempts to maximize Q ), the
method based on information centrality [19] and several others (please see [17] for a survey). The worst-case time com-
plexity of global approaches is, unfortunately, very high. Thus, these strategies cannot be successfully applied on very large
networks comprising millions of vertices and billions of edges.

In contrast, another family of approaches considers local information, like the knowledge of the neighbors of each vertex
to perform graph clustering. These are called localapproaches and one of the best-known is Louvain Method – LM [4]. In
general, these approaches use greedy strategies to maximize Q and, therefore, they may get trapped into local optima and,
ultimately, fail to discover the actual community structure of a graph.

Second, the optimization of modularity has a major drawback called resolution limit [18], i.e., the impossibility of finding
communities of small size, under certain circumstances, that typically depend on the topology of the network. Several
authors have proposed ad hoc solutions to alleviate the resolution limit problem such as providing novel definitions of
modularity [32] or adding weights to the edges [3].

In this article we define a methodology for clustering graphs which couples the accuracy of global approaches with the
computational performances guaranteed by local methods and, at the same time, mitigates the resolution limit effect. The
proposed approach is called COmplex Network CLUster DEtection or, shortly, CONCLUDE.

CONCLUDE works in two stages: in the first one, it maps graph vertices onto points of a Euclidean space and it computes
the pairwise distance among them by exploiting a Euclidean-like distance metric. In the second stage, it adopts distances
between points as a guide to perform clustering.

In the first phase, in order to map graph vertices onto points, CONCLUDE relies on the concept of κ-path centrality
[11,12]. The κ-path edge centrality of an edge is defined as the probability that the edge is selected to spread information
in the network; such probability is computed by a suitable process of information diffusion simulated by the algorithm
over the network itself. The concept of κ-path edge centrality fits quite well with our intuitive, experience-based notion of
community: groups of individuals who frequently exchange information each other while the possibility that an information
goes out from the community should be regarded as an unlikely event. Finding edges with high centrality is equivalent
to disclosing preferential channels along which information flows and, ultimately, this is useful to reveal communities of
individuals.

The definition of κ-path centrality is based on an information propagation model in which we assume that a message
(representing a basic piece of information) is injected in an arbitrary vertex of the network and it flows along random,
non-backtracking paths of length up to κ . This model is justified by the fact that users are treated in an equally fashion
and, therefore, each user is allowed to generate and spread a message. In addition, each user has only a partial knowledge
of the network topology and, in particular, she is only aware of her neighborhood. For these reasons, the propagation path
followed by a message is unpredictable because each user can decide on her own the person to which a message has to be
forwarded and, therefore, such a path can be intended as randomized.

The other assumption is that paths are non-backtracking. In fact, we understand that a user wants to maximize the
number of persons getting the message and, therefore, she has no interest in contacting her sources. Finally, since distant
users are not likely to influence each other, propagation paths are also required to be of bounded length.
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The computation of κ-path edge centrality of an arbitrary edge is computationally demanding since it should consider all
paths containing the given edge and, in principle, there could be exponentially-many such paths (in the number of vertices
of the graph). We propose here a heuristic algorithm, called ERW-Kpath (Edge Random Walk κ-path Centrality), to efficiently
compute edge-centrality values.

Once κ-path centrality values have been computed, CONCLUDE proceeds to compute the distance between each pair
of connected vertices. Such a definition is based on the principle of structural equivalence [47]: two vertices i and j are
considered close if their neighbors are close too. In particular, a vertex k which is a neighbor of both i and j is assumed to
be close to both i and j if the probability that a message flows from k to i is comparable to the probability that it flows
from k to j. If these probabilities are large enough, then a message received by k will be forwarded, with high probability, to
both i and j. Vice versa, if these probabilities are small enough, then a message received by k is not likely to be forwarded
to i and j. The probability that a message flows from the vertex k to the vertex i (resp., j) coincides with the centrality of
the edge linking k to i (resp. to j).

After the mapping has been performed and weights are in place, in principle we can follow it up with any off-the-shelf
local algorithm for detecting communities in graphs. In this article we discuss clustering by the Louvain Method described
above, as we found it particularly suitable to be embedded into our CONCLUDE algorithm.

According to the discussion above, we can notice that CONCLUDE advances the state of the art in a number of direc-
tions:

• In order to compute the edge centrality values, we use non-backtracking random walks of finite length κ . The value
of κ can be fixed in an arbitrary fashion and, for large values of κ (e.g., for κ in the same order of magnitude of the
graph diameter) our walks allow to explore portion of the graph which are quite far from each other. In this respect,
the κ-path edge centrality has to be intended as an information at the global level because the horizon of the walker
encompasses the whole graph. Interestingly, the simulation of such random walks requires to select at random the
starting vertex and, for each selected vertex, the walker is asked to know the neighbors of that vertex. In this way, the
walker is not required to know in advance the whole graph topology nor to store it.

• Our analysis shows that the worst-case time complexity of CONCLUDE is near linear in the number of edges in the
graph. This makes our approach computationally competitive and its performance is comparable with those of local
algorithms.

• According to our definition of distance, given three (or possibly more) vertices i, j and k, these vertices are mapped
onto close points if, when one of the three receives a message, then such a message is conveyed with high probability
to the other two vertices. In this way, a group of vertices that forms a community is mapped onto a dense region of a
Euclidean space. This ultimately makes the process of identifying communities more effective.

• In the computation of distances, we used edge centrality as weights on edges. As outlined above, the procedure of
weighting edges is, in general, beneficial to reduce the resolution limit problem. In a previous work [11], we showed
that the usage of edge centrality in conjunction with some clustering algorithms raises the accuracy of these algorithms
in comparison of that computed without exploiting weights on edges. This article, however, differs from our previous
work because in [11] we used a weighting procedure on edges to improve the accuracy of the clustering process. In this
article, instead, we use edge centrality to compute distances between pairs of vertices and, as a final outcome, to map
graph vertices onto points of a Euclidean space. Such a mapping is interesting per se because a wide range of complex
analysis tasks are allowed (like finding the k-nearest neighbors of a vertex).

Performance and scalability of CONCLUDE have been assessed through experiments and benchmarking both real and
artificial network datasets. In particular, we considered 6 real-world datasets where the largest, a sample from Facebook,
consists of 63 731 vertices and 1 545 684 edges. We compared the modularity achieved by CONCLUDE clustering against
the results of well-known algorithms such as the Louvain Method alone, COPRA [25] and OSLOM [30]. As for synthetic
(artificially-generated) networks, we used the LFR benchmark [29] to generate 72 networks whose community structure
was known in advance. We compared communities found by CONCLUDE with the actual ones by using the so-called Nor-
malized Mutual Information measure from Information Theory [9]. Finally, to make the algorithm available for the research
community, an implementation of CONCLUDE can be now freely obtained.1

The outline of the article is as follows: in Section 2 we provide a detailed discussion of main methods in literature to
find communities in networks based on the principle of modularity maximization. In Section 3 we provide the definition of
κ-path centrality and describe our ERW-Kpath algorithm. The main features of CONCLUDE are covered in Section 4 whereas
an in-depth experimental analysis of CONCLUDE performance is discussed in Section 5. Finally, in Section 6 we draw our
conclusions.

1 See the following URL: www.emilio.ferrara.name/CONCLUDE.

http://www.emilio.ferrara.name/CONCLUDE
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2. Background

In this section we first describe approaches to finding communities based on the principle of maximizing the network
modularity [21] (in Section 2.1). Next, we discuss the shortcomings associated with the maximization of this function and
illustrate some strategies to cope with them (Section 2.2).

2.1. Finding communities by maximizing network modularity

The concept of network modularity or, in short, modularity was introduced by Girvan and Newman [21]. Network mod-
ularity is usually denoted as Q and it is based on the idea that a random graph is not expected to exhibit a community
structure. Therefore, for a given a graph G = 〈V , E〉 and a partition (or clustering) C = {C1, . . . ,Cq} of the vertices of G ,
a random graph G ′ is built by copying each vertex of G onto a vertex in G ′ . Thus, for each vertex i in G , there exists an
homonym vertex in G ′ . Because of each vertex in V uniquely corresponds to a vertex in V ′ and vice versa, for each vertex
i ∈ V we shall denote as i′ ∈ V ′ the unique vertex corresponding to i. In G ′ an edge is drawn between a pair of vertices
according to a uniform probability and, in addition, the degree sequence in G ′ matches the actual degree sequence of G .
Therefore, if a vertex i has degree di in G , then also i′ has degree di . Furthermore, if the total number of edges in G is m,
then the total number of edges in G ′ will also be m. Finally, the expected number of edges linking two vertices i′ and j′

is proportional to the product of their degrees and, in particular, it is equal to
ki ·k j
2m . The graph G ′ is called the null model

for G .
For a given subgraph Ci ⊆ C , we can select one by one the vertices forming Ci and consider, for each selected vertex, the

corresponding vertex in G ′ . This leads to identify a subgraph C′
i in G ′ corresponding to Ci . The subgraph Ci is classified as a

community if the density of internal edges in Ci is significantly greater than in C′
i .

The Q function formally encodes the previous reasoning, i.e., for each community Ci , it checks if an edge in Ci exists
also in C′

i . This leads to the following formula

Q = 1

2m

∑
i, j

(
Aij − ki · k j

2m

)
δ
(
C(i),C( j)). (1)

Here Aij = 1 if vertices i and j in G are connected by an edge and 0 otherwise and C(i) (resp., C( j)) is the community
containing the vertex i. Here δ(·,·) denotes the Kronecker function: two vertices i and j provide a non-zero contribution to
the value of Q if and only if they belong to the same community.

The problem of maximizing Q has been proved to be NP-hard by Brandes et al. [6]. The first, non-trivial, approximability
results beyond the NP-hardness were proposed by DasGupta and Desai [10]. They studied dense graphs separately from
sparse ones and their main result proves the (1 + ε)-in-approximability of Q in the case of dense graphs and a logarithmic
approximation in the case of sparse graphs.

Several heuristic strategies to maximize the network modularity Q have been proposed as to date. Probably, the most
popular one is known as the Girvan–Newman strategy [21,39].

In Girvan–Newman, edges are ranked by using a parameter known as edge betweenness centrality. The edge betweenness
centrality B(ei j) of a given edge ei j ∈ E connecting the vertex i with the vertex j is defined as

B(eij) =
∑
l∈V

∑
m∈V

np(l,m, eij)

np(l,m)
(2)

where l and m are arbitrary vertices in V , np(l,m) is the number of shortest paths connecting l and m and np(l,m, ei j) is
the number of the shortest paths between l and m containing ei j .

It is possible to maximize Q by progressively deleting edges with the highest value of betweenness centrality, based on the
consideration that they shall connect vertices belonging to different communities [39]. The process iterates until a significant
increase of Q is obtained. At each iteration, each connected component of G identifies a community. Unfortunately, the
computational cost of this strategy is O (|V |3) and this makes it unsuitable for the analysis of large graphs. The most time-
expensive part of the Girvan–Newman strategy is the calculation of the betweenness centrality. Efficient algorithms have
been designed to approximate the edge betweenness [5], or to efficiently compute shortest paths, for example in the context
of weighted graphs [43]. For real-world graphs, however, the computational costs still remain prohibitive.

Several variants of this strategy have been proposed during the years, such as the Fast Clustering Algorithm provided
by Clauset, Newman and Moore [8], that runs in O (|V | log |V |) on sparse graphs. In [14], Duch and Arenas proposed the
extremal optimization method based on a fast agglomerative approach whose worst-case time complexity is O (|V |2 log |V |).

An interesting network modularity maximization strategy is provided in the so-called Louvain Method (LM) [4], which
will be extensively described in Section 4.2.

The approaches mentioned above use greedy strategies to maximize Q . In [26] the authors propose to use simulated
annealing to maximize Q . This approach achieves a high accuracy but can as well be computationally very expensive. The
main advantage of simulated annealing is that it does not exploit any greedy strategy, thus it is less likely to incur in the
problem of becoming stuck in local optima. Starting from a randomized partition and an arbitrary parameter that simulates
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the temperature of the system, the simulated annealing algorithm computes the energy of the current configuration (say Ea),
according to a given suitable function. After some changes in the partitioning are applied, the algorithm recomputes the
energy level of the new configuration (say Eb) and accepts the current solution if the new energy value is lower than
the former one. Interestingly, also a non-optimal solution might be accepted, with a probability Pr(γ ) proportional to
the temperature T of the system, computed according to the Boltzmann factor Pr(γ ) = e−�Eab/T where �Eab = Eb − Ea .
Then, the algorithm lowers the temperature and iterates the process. The lower the temperature, the lower the chance of
accepting non-optimal solutions. This means that in the early stage the algorithm tends to accept non-optimal solutions
more frequently, and in the late stage the optimal solution should emerge. This helps the algorithm to avoid getting stuck
in local-optima, but contributes to its high computational cost.

2.2. Limitations of network modularity

In this section we discuss some limitations of the approaches attempting at optimizing Q . The first problem of mod-
ularity depends on the fact that there exists an exponential number of partitions of a graph whose modularity values are
close each other and these values are also close to the global maximum of Q [23]. On the one hand, such a result explains
why methods which are in principle very different each other generate graph clusterings whose modularity values are quite
close. On the other hand, different algorithms could produce clusterings which significantly differ each other but each of
those could be associated with similar modularity scores. The main consequence is that none of these clusterings appears
to be better than others, unless we can manage additional information explaining how communities are organized.

The second (and perhaps most important) problem is known as resolution limit [18]. Informally, the resolution limit
problem consists in the fact that if we hypothesize that communities of small size exist in the original graph, the value
of Q increases if we merge these communities into a larger one. Merging these communities might be potentially wrong
because, in order to pursue the maximization of Q , we would ignore small communities possibly relevant in the community
structure of a graph. From a quantitative standpoint, the resolution limit problem arises whenever in a graph G there exists
a community C such that the sum of the degrees of vertices inside C is less than

√
m being m the number of edges

in G [18].
The resolution limit problem directly depends on the definition of modularity (as reported in Eq. (1)) and, in particular,

from the null model exploited for defining Q . In the definition of the null model we assume that an arbitrary pair of
vertices in the graph can belong to the same community, independently of the position of each vertex in the graph or, in
other words, that the horizon of an arbitrary vertex coincides with the whole graph. Such an assumption can hold true
for small-sized graph but it is certainly false for large scale networks like the Facebook social graph. A possible strategy to
address the resolution limit would therefore require to assume that each vertex has a partial horizon, and, consequently, it
is allowed to interact with just a portion of the graph. This would lead to consider local measures of modularity [35].

Li et al. [32] introduced a function, called modularity density which is not based on a null model. The usage of modularity
density is proven to yield better results than those achieved by the modularity defined in Eq. (1) despite it continues
suffering from the resolution limit problem. To avoid the resolution limit, the authors suggested a more general definition
of modularity density which depends on a parameter λ. The tuning of λ allows for exploring the graph at various levels and,
depending on the specific value of λ, it can favor the discovery of small communities or of large communities respectively.
An analogous study is presented in [2].

Berry et al. [3] studied how to alleviate the resolution limit problem in the context of weighted graphs. In that paper,
the authors suggested to assign a weight equal to 1 to each inter-cluster edge and a weight equal to ε to each intra-cluster
edge, being 0 < ε < 1. Because of this weighting procedure, the authors proved that a cluster is not detected if the following

condition occurs: ws �
√

W ε
2 − ε, being ws the sum of the weights of intra-cluster edges, W the sum of all weights of the

edges in G and ε the maximum weight of an inter-cluster edge. Such a result is better than the resolution limit found in
[18] for unweighted graphs and this means that by suitably weighting a graph it is possible to discover small-sized clusters
still by optimizing modularity.

3. The κ-path edge centrality

In this section we briefly describe our method to rank edges in a graph, called κ-path edge centrality. The κ-path edge
centrality has been introduced in [12] to better understand the strength of the tie bonding two vertices and, as a further
step, to produce better graph clusterings [11].

The notion of κ-path centrality relies on the idea of ranking edges in a graph according to their capability of spreading
information. In our approach, the basic piece of information is called message. The introduction of κ-path edge centrality is
justified by our intuitive definition of community: in fact, we assume that communities in social networks can be thought
as circles of friends who frequently exchange messages each other. Ranking edges on the basis of their aptitude to spread
messages is therefore instrumental to highlight preferential pathways along which information flows and, ultimately, this is
relevant to disclose communities.

To define the κ-path edge centrality we need a mathematical model describing how information flows in a network. To
the best of our knowledge, one of the first models to rank edges in a graph on the basis of how information spreads and,
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subsequently, to discover communities was introduced by Fortunato et al. in [19]. Such a model assumes that information
from a source vertex to a target one is forced to travel along the shortest path connecting the two vertices. Therefore, given
a pair of vertices i and j, Fortunato et al. defined a parameter, called efficiency as the inverse of the length of the shortest
path connecting i and j.

The hypotheses governing the model of Fortunato et al. could not hold true in real scenarios: for instance, in online
social networks like Facebook, a user is agnostic about the whole network topology and, therefore, she is not able to find
shortest paths. In addition, the computation of efficiency requires to calculate all pairs of shortest paths and this task can
be prohibitively time-expensive in large networks.

To solve these drawbacks, we drop the assumption that information is forced to flow along shortest paths and assume
that all paths in the graph can be exploited to convey information. As a consequence, since all paths are eligible to convey
messages, we assume that a sender selects at random one of these paths to transmit the original message.

We pose two further requirements:

1. Simple Paths: We must avoid that in the information propagation process an edge is selected more than once. This
encodes the fact that, in reality, whenever a user wants to disseminate a message, she has to maximize its coverage
(i.e., she wants that the message is delivered to as many users as possible). Therefore, she must avoid that the message
is sent twice to the same user.

2. Bounded Length Paths: As shown in [20], distant vertices in social networks (i.e., those vertices that are connected by
long paths only) are unlikely to influence each other. We agree with this observation and figure that two vertices are
classified as distant if the path connecting them is longer than κ hops, being κ a fixed threshold.

A path satisfying the requirements above is said simple κ-path. We are now in the position of formally introducing the
concept of κ-path centrality:

Definition 1 (κ-path edge centrality). Let: (i) G = 〈V , E〉 be a graph, (ii) κ > 0 be an integer and (iii) ei j ∈ E be an edge of
E connecting the vertices i and j. The κ-path edge centrality Lκ (ei j) of ei j is the sum, over all possible source vertex s, of
the probability with which a message originated from s traverses ei j , assuming that the message traversals are only along
random simple κ-paths.

If we define as Pr(e, s) the probability of selecting the edge e in a random simple κ-path originating from an arbitrary
source vertex s, the centrality of an edge ei j reads as follows

Lκ (eij) =
∑
s∈V

Pr(e, s).

Unfortunately, Definition 1 is hard to apply in practice because we need to consider all potential random simple paths
of length at most κ in G and such a number could be exponential against the number of vertices in G . To overcome this
limitation, we decided to use multiple random walks to simulate the propagation of a message. Such an idea has been
already successfully exploited to compute the centrality of vertices in graphs [1,38].

The usage of random walks to simulate simple κ-paths allowed us to design a heuristic algorithm to efficiently approx-
imate edge centrality. Our algorithm is called ERW-Kpath – Edge Random Walk κ-path Centrality. It takes as input a graph
G = 〈V , E〉, an integer κ and an integer ρ . The algorithm performs ρ iterations. We studied the impact of ρ on algorithm
performances in Theorem 3.2.

At each iteration, the ERW-Kpath algorithm works as follows:

1. A vertex i ∈ G is selected as starting vertex uniformly at random among all vertices in V . A message is injected in the
graph starting from i. All the edges in E are marked as unvisited. A weight equal to 1 is assigned to each edge.

2. The message is propagated in the network as follows: starting from i, a vertex j adjacent to i is selected at random
with uniform probability, assuming that the edge ei j linking i and j is marked as unvisited. If there is no edge ei j
marked as unvisited then the Step 2 ends. The weight of ei j is increased by 1, ei j is marked as visited and the
propagation process restarts from j. The process ends if one of the two following criteria is met: (i) a path of length κ
has been generated or (ii) there is no edge associated with j which has been marked as unvisited.

The label associated with each edge prevents from visiting an edge more than once. When the ERW-Kpath algorithm
ends, the weight of each edge ei j is divided by ρ and the obtained value is the edge centrality L̂κ (ei j) of ei j returned by the
ERW-Kpath algorithm.

The worst-case time complexity of the ERW-Kpath algorithm is O (κρ) because the external loop is iterated exactly ρ
times whereas the internal one is carried out at most κ times. It is possible to show that the ERW-Kpath algorithm provides
an accurate approximation of the actual centrality value of an edge. To make the presentation of our results simpler, we
shall use a simplified notation in which an edge connecting two arbitrary vertices i and j will be denoted as e rather
than ei j (as we did before).
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Before illustrating Theorem 3.2, we are in charge of defining the deviation error εe associated with an edge e ∈ E . The
deviation error is defined as follows

εe = |Lκ (e) − L̂κ (e)|
L̂κ (e)

and it assesses the (percentage) deviation of L̂κ (e) to Lκ (e). The smaller εe , the better the approximation of Lκ (e).
Our goal is to show that, for an arbitrary edge e and an arbitrary constant ε̂ , the probability that the deviation error εe

is larger than ε̂ is bounded by a function of the form exp−ρ . Such a result states that a little increase in ρ (and, therefore,
in the running time of the ERW-Kpath algorithm) is able to produce a relevant decrease in the difference between εe and ε̂
and this ultimately implies that the algorithm is able to quickly converge to the actual values of edge centrality.

To prove such a property we need a preliminary result known as Hoeffding inequality:

Theorem 3.1 (Hoeffding inequality). Let X1, . . . , Xn be independent random variables. Assume that, for each i such that 1 � i � n, the
random variable Xi ranges in the real interval [ai,bi]. Let X = (X1 + · · · + Xn)/n. For any t � 0 we have

Pr
(∣∣X − E[X]∣∣ � t

)
� 2 exp

(
− 2t2n2∑n

i=1(bi − ai)
2

)
. (3)

Proof. See [27]. �
As a special case, if all random variables Xi can only take up value 0 or 1 then Eq. (3) simplifies to

Pr
(∣∣X − E[X]∣∣ � t

)
� 2 exp

(−2t2n
)
. (4)

We are now able to prove our claims.

Theorem 3.2. Let: (i) G = 〈V , E〉 be a graph, (ii) 〈κ,ρ〉 be a pair of positive integers and (iii) ε̂ be a positive real number. Assume to
run the ERW-Kpath algorithm on G so that the algorithm generates ρ simple paths of length up to κ and let L̂κ (e) be the edge centrality
value of an arbitrary edge e ∈ E returned by the ERW-Kpath algorithm. The probability that the deviation error εe is greater than or
equal to ε̂ is bounded by e−ρ .

Proof. By Definition 1 and the definition of conditional probability, we get

Lκ (e) =
∑
s∈V

Pr(e, s) =
∑
s∈V

Pr(e|s)Pr(s) = 1

|V |
∑
s∈V

Pr(e|s). (5)

In Eq. (5), the term Pr(s) is the probability that s is selected as the source vertex and it equals 1
|V | because the starting

vertex is selected with uniform probability across all vertices in V .
The ERW-Kpath algorithm performs ρ iterations, and, at each iteration, it generates a simple κ-path. In our analysis we

will first focus on the result produced in a given iteration, say the 
-th iteration with 1 � 
� ρ .
Let us define the random variable Y
(e) as follows

Y
(e) =
{

1 if e has been selected at the 
-th iteration,

0 otherwise.

Since Y
(e) is an indicator variable, we have that E[Yi(e)] = Pr(Yi(e) = 1).
For a fixed 
, Pr(Y
(e) = 1) is equal to the probability of selecting e independently of the choice of starting vertex s.

Therefore, if we denote, as we did before, by Pr(e, s) the probability that ERW-Kpath algorithm selects e when the starting
vertex is s we get

Pr
(
Yi(e) = 1

) =
∑
s∈V

Pr(e, s) =
∑
s∈V

Pr(e|s)Pr(s) = 1

|V |
∑
s∈V

Pr(e|s).

The ERW-Kpath algorithm increases by 1 the weight of e each time e is selected and, at the end, it divides the total
weight by ρ . It follows that the value of centrality L̂κ (e) returned by the ERW-Kpath algorithm is a random variable
distributed as 1

ρ

∑ρ

=1 Y
(e). The average of L̂κ (e) is as follows

E
[
L̂κ (e)

] = 1

ρ

ρ∑
E
[
Y
(e)

] = 1

ρ

ρ∑
Pr

[
Y
(e) = 1

] = 1

ρ

ρ∑(
1

|V |
∑

Pr(e|s)
)

= 1

ρ
× ρ × Lκ (e) = Lκ (e).

=1 
=1 
=1 s∈V
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From Eq. (4), with t = ε̂ L̂κ (e) it follows that

Pr
(∣∣Lκ (e) − L̂κ (e)

∣∣ � ε̂ L̂κ (e)
)
� 2 exp

(−2ρε̂2 L̂κ (e)2).
Since L̂κ (e)� 1

ρ > 0, the previous equation can be rewritten as follows

Pr

( |L̂κ (e) − Lκ (e)|
Lκ (e)

� ε̂

)
� 2 exp

(−2ρε̂2 L̂κ (e)2) ⇒ Pr(εe � ε̂) � 2 exp
(−2ρε̂2 L̂κ (e)2) = K exp(−ρ)

where K = exp(2ε̂2 L̂κ (e)2). The latest equation states that the probability that the deviation error associated with an arbi-
trary edge e is greater than ε̂ is bounded (up to a constant factor K ) by the function e−ρ and this ends the proof. �

According to Theorem 3.2, we can conveniently fix ρ so that to make Pr(|L̂κ (e)− Lκ (e)|� ε) for an arbitrary threshold ε

as little as we need. In particular, for a fixed ε , we can set ρ = α log |V |
2ε2 L̂κ (e)2 , being α any real number greater than 1 to obtain

the following result

Pr

( |Lκ (e) − L̂κ (e)|
L̂κ (e)

� ε

)
� exp

(−2ρε̂2 L̂κ (e)2) = exp

(
−2

α log |V |
2ε2 L̂κ (e)2

ε2 L̂κ (e)2
)

= exp
(−α log |V |) = 1

|V |α .

In such a case, the worst-case time complexity of the ERW-Kpath algorithm is O (κα log |V |) and its deviation error (for
each edge e ∈ E) is no larger than 1

|V |α .

4. Computing distances and finding communities

In this section we describe how to use κ-path edge centrality to compute distances between vertices in a graph (see
Section 4.1); after this, we show how to use these distances in conjunction with the Louvain Method to identify communities
in a graph (see Section 4.2). Finally, we compare our method to a measure of centrality that turns out to be very close to
ours (see Section 4.3).

4.1. Computing distances between graph vertices

Once κ-path centrality values have been computed, CONCLUDE proceeds to calculate the distances between each pair of
vertices; computing distances allows for embedding graph vertices into a metric space. Such a feature is per se interesting,
independently of the fact we used such an embedding to perform graph clustering.

In fact, in many Database and Information Retrieval Applications, a large (and perhaps one of the most common) class
of queries assumes that a collection of data items is available and requires to find the items in the collection best matching
with a particular query item, according to some definition of best. For example, given a database reporting images, a typical
query is to find all images that are similar to a particular query image. If a metric distance can be defined between pair of
items composing the database, then it is possible to design efficient distance-based data structures which make the retrieval
or the indexing of that items easy and fast even on huge collections [7].

Our approach to compute distances relies on the computation κ-path edge centralities and this provides two main
advantages. First, the computation of distances is fully automatic and does not require any human intervention. Second, our
definition of distance is based on the information propagation model discussed in Section 3. This provides our definition of
distance with a meaningful interpretation: two points are as much distant as the chance they can exchange messages is low.
In particular, two vertices i and j are deemed close if a message received by i is sent, with high probability, to the vertex
j and vice versa. To formally encode such a reasoning, we could first define a proximity measure σi j between the vertices
i and j as the κ-path centrality of the edge linking i and j. Unfortunately, such a measure of proximity is not satisfactory
for two reasons: first of all, no edge could exist between vertices i and j and, in such a case, the proximity σi j would be
undefined. Even assuming the existence of an edge from i to j and an edge from j to i, it can happen that the centrality
of the edge going from i to j differs from the centrality of the edge linking j and i and this implies that σi j 
= σ ji , thus
violating the symmetry requirement imposed by the concept of proximity.

To overcome these limitations, we rely on the principle of structural similarity [47] and we guess that two vertices i and j
are to be considered as close if their neighbors are close too. In line with the previous reasoning, a vertex k is close to both
i and j if the probability that a message flows from k to i is comparable to the probability that it flows from k to j. The
same definition implies that the vertices i and j are classified as distant if the probability that a message flows from k to i
is high (resp., low) and the probability that a message flows from k to j is low (resp., high). The probability of conveying a
message from k to i (resp, j) coincides with the κ-path edge centrality of the edge eki (resp., ekj). Such a definition is quite
interesting because the vertices i, j and k would form a triangle in which, if one of the three vertices receives a message,
then such a message is conveyed with high probability to the two other vertices; in an analogous fashion, if no one of these
vertices receives a message, the chance that the two other vertices will receive it is low.
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By generalizing the previous concept, we can consider a group C of vertices in G and we can observe that if a message
flows with high probability among the vertices in C then C is mapped onto a dense region and this highlights that C is a
community in G . This argument leads us to consider the following definition of proximity

σi j =
√∑

k∈V

[
Lκ (eki) − Lκ (ekj)

]2
. (6)

Eq. (6) shows some nice properties: it uses the contribution of all vertices in V to quantify the proximity degree of
vertices i and j; in addition, it is based on the traditional Euclidean distance definition and therefore, it maps vertices of G
onto points of a Euclidean space.

In Eq. (6), we assume that all vertices are equally important in deciding whether two vertices are close, regardless of
their degrees. Such a choice, however, can yield unwanted results because the degree of vertex can influence the centrality
of edges incident onto it.

To convince ourselves of this fact, let us select at random a vertex s ∈ V and assume to generate a random simple
κ-path ps = {s, i1, i2, . . . , iκ−1} starting from s. Let us focus on a single run of the ERW-Kpath algorithm and observe that
the probability of selecting the edge connecting s and i1 is equal to the ratio 1

|N(s)| , being N(s) the set of neighbors of the

vertex s. Analogously, the probability of going from i1 to i2 is equal to 1
|N(i1)−{s}| . The previous formula is justified by the

fact that the path generated in a single run by the ERW-Kpath algorithm cannot pass twice for the same edge: therefore if
i2 would coincide with s, the edge connecting i2 with i1 cannot be selected. In such a case the vertex i2 must be excluded
from N(i1).

By generalizing the previous result, if we consider a path ps = {s, i1, . . . , il} and we focus on two vertices ia and ia+1,
the probability to select the edge joining ia and ia+1 is

Pr(eiaia+1) =
{

0 if N(ia) ⊆ {s, i1, . . . , ia−1},
1

|N(ia)−{s,i1,...,ia−1}| otherwise.

Intuitively, the special case Pr(eiaia+1) = 0 occurs when all edges incident on N(ia) have been already visited dur-
ing the considered path {s, i1, . . . , ia−1}. We denote with deg(ia) the degree of ia and observe that deg(ia) = |N(ia)| �
|N(ia) − {s, i1, . . . , ia−1}| � |N(ia) − κ |. In practical scenarios, the value of κ is intended as small and, therefore, Pr(eiaia+1) is
proportional to 1

deg(ia)
.

According to these observations, the probability of selecting an edge is biased by the degree of the vertex associated
with it. Therefore, the larger the degree of a vertex i, the easier is that a message passes through i in several simulations.
Therefore, i would be classified as close to almost all vertices.

This suggests us the idea of alleviating the dependency of the proximity calculation on the degrees of the considered
vertices. To do so, we suggest to normalize the proximity as follows

σi j =
√√√√∑

k∈V

[Lκ (eki) − Lκ (ekj)]2

deg(k)
(7)

and, subsequently, to define the distance measure between vertices as dij = 1 − σi j .
The naive implementation of the distance computation could be time-expensive as it requires O (|V |2) iterations. Yet its

cost can be decreased to nearly linear by observing that we can rewrite Eq. (7) as

σi j =
√∑

k∈N(i)−CN(i, j) [Lκ (eki)]2

|N(i) − CN(i, j)| +
∑

k∈N( j)−CN(i, j) [Lκ (ekj)]2

|N( j) − CN(i, j)| +
∑

k∈CN(i, j) [Lκ (eki) − Lκ (ekj)]2

|CN(i, j)| (8)

where the symbol CN(i, j) indicates the subset of neighbors common to i and j.
By adopting this shrewdness, the cost of the computation is reduced to O (d(v)2|V |), where d(v) is the average degree

of the vertices of the network.

4.2. Finding communities

The last step of our method consists in the network partition. CONCLUDE adopts the paradigm of the network modularity
maximization which we described in detail in Section 2 and exploits an approximate technique inspired by the Louvain
Method (LM) [4].

LM is a computationally effective algorithm, thus it is well-suited for partitioning large networks. It consists of two steps
which are iteratively repeated. The input of LM is a weighted network G = 〈V , E, W 〉 being W the weights associated with
each edge.2 The modularity is defined as in Eq. (1), in which Aij is the weight of the edge linking i and j and ki (resp., k j )
is the sum of the edges incident onto i (resp., j).

2 Of course, in case of unweighted graphs, W is the adjacency matrix of G .
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Initially, each vertex i forms a community and therefore, there are as many communities as vertices in V .
The two steps of the LM operate as follows:

(i) For each vertex i, the algorithm computes the gain �Q derived from moving i to a cluster C , as

�Q =
∑

C +kC
i

2m
−

(∑
Ĉ +ki

2m

)2

−
[∑

C

2m
−

(∑
Ĉ

2m

)2

−
(

ki

2m

)]
. (9)

Here
∑

C is the sum of the weights of the edges inside C ,
∑

Ĉ is the sum of the weights of the edges incident onto
vertices in C , ki is the sum of the weights of the edges incident to the vertex i, kC

i is the sum of the weights of the
edges from i to vertices located inside C and m is the sum of the weights of all the edges in the network.
The vertex i is placed in the cluster C for which the gain achieves its maximum value. If it is not possible to achieve a
positive gain, the vertex i will remain in its original community. This process is applied repeatedly and sequentially for
all the vertices until no further improvement can be achieved.

(ii) In the second step, the algorithm builds a meta-network whose vertices are those clusters found in Step (i), collapsing
all edges among vertices belonging to a pair of cluster onto a single edge. The weight of this edge is equal to the sum
of the weights of the collapsed edges. Once the second step has been performed, the algorithm re-applies the first step.

Steps (i) and (ii) are repeated until an arbitrarily small improvement �Q is attained at each iteration. The cost of the
whole process is O (γ |V |), where γ is the number of iterations required by the algorithm to converge (in our experience,
γ < 5).

The advantage of our approach with respect to the original LM is twofold: first, we obtain the splitting of clusters
connected by edges with low distance, which is a global feature, maximizing the network modularity, while LM only relies
on local information (i.e., vertex neighborhood); second, our strategy is able to produce an edge weighting, while the original
LM – and most of current clustering algorithms – cannot infer edge weights in case of unweighted networks. This aspect
ensures better performance of our strategy in most of cases (as discussed in the remainder of this article).

Summarizing, by adopting efficient graph memoization techniques, the computational cost of CONCLUDE is near linear.
In fact, it results from the three previously described steps, i.e., O (κ |E| + d(v)2|V | + γ |V |) = O (Γ |E|).

The pseudo-code describing the various steps performed by CONCLUDE is reported in Algorithm 1. In detail, CONCLUDE
takes as input the graph G , an integer κ and an integer ρ . It first calls a subroutine ERW-Kpath that computes κ-path
edge centralities on vertices of G by performing at most ρ iteration. The output of this subroutine is stored in an array of
weights �ω. In the second step CONCLUDE calls a subroutine Compute-Pairwise-Distances which takes as input the graph G
along with the array of weights �ω and computes distances among all pairs of vertices by applying Eq. (8). The subroutine
Compute-Pairwise-Distances returns as output a matrix � containing all pairs of distances between vertices. Finally, in its
final step CONCLUDE calls the subroutine Louvain-Method, which implements the LM method. It takes as input the matrix
� and returns as output the community structure C of G .

Algorithm 1 CONCLUDE(G = 〈V , E〉: a Graph, κ : an integer, ρ: an integer)
1: �ω ← ERW-Kpath(G, κ,ρ)

2: � ← Compute-Pairwise-Distances(G, �ω)

3: C ← Louvain-Method(G,�)

4.3. Comparison with existing definition of distances

In the past, many papers have focused on the problem of computing distances between vertices of a graph and,
subsequently, to use such a distance with the purpose of clustering the graph. A nice approach is due to Donetti and
Muñoz [13]. In that paper, the authors suggested to consider the Laplacian LG associated with a graph G , which is defined
as L(G) = DG − AG . Here DG is a diagonal matrix such that DG [i, i] is equal to the degree of the i-th vertex and AG is the
adjacency matrix of G . The graph G is assumed undirected and, therefore, AG is a symmetric matrix. The approach of [13]
suggests to compute the first D non-trivial eigenvectors of L(G), i.e., the eigenvectors corresponding to the D largest and
non-zero eigenvalues of L(G). Subsequently, graph vertices are projected onto the subspace spanned by these eigenvectors.
In this way each vertex is represented by a point in R

D and the distance between two vertices is defined as the distance of
the two vectors in R

D corresponding to them.
To make the comparison between our approach and that of Donetti and Muñoz [13] fair, we need to assume that G is

symmetric. Under this conditions, if we relax the hypothesis of non-backtracking paths we can give a spectral interpretation
of κ-path edge centrality values computed by our ERW-Kpath algorithm. The ERW-Kpath algorithm initially builds an n × n
matrix EG . The generic entry EG [i, j] is equal to 0 if there is no edge going from the vertex i to the vertex j and it is equal
to 1 otherwise. By construction, the matrix EG is symmetric and, therefore, there is an orthogonal family of eigenvectors of
�e1, . . . , �en associated with EG [34]. This means that �et

i · �e j = δi j , being δi j the above mentioned Kronecker function. We can
write EG as EG = ∑n

i=1 λi�ei�et
i , being λi the i-th eigenvalue. The probability of going from the vertex l to the vertex m with

a path of length 2 can be obtained by computing E2 = EG EG and by picking E2 [l,m].
G G
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With some simple calculations we get

E2
G =

(
n∑

i=1

λi�ei�et
i

)(
n∑

j=1

λ j�e j�et
j

)
=

n∑
i, j=1

(
λi�ei�et

i

)(
λ j�e j�et

j

) =
n∑

i, j=1

λiλ j�ei
(�et

i �e j
)�et

j =
n∑

i, j=1

λiλ j�eiδi j�et
j =

n∑
i=1

λ2
i �ei�et

i

and, more in general, Ep
G = ∑n

i=1 λ
p
i �ei�et

j . In these products, the larger λi is, the higher its contribution to EG . As in [13], we

could pick only the D largest eigenvalues to get an approximation of Ep
G . The probability that ERW-Kpath selects an edge

depends on matrices Ep
G (with p � κ ), and therefore, the edge centrality of a vertex is influenced by the top D non-trivial

eigenvalues of EG . According to Eq. (8), the distances computed by our approach depend on edge centralities, and, therefore,
we obtain that also distances in our approach are influenced by the D eigenvalues having the largest magnitude.

From a computational standpoint, [13] uses the popular Lanczos algorithm to find the eigenvalues of the Laplacian which,
de facto, computes the power of a matrix by applying some efficient procedures like the Gram–Schmidt algorithm. Lanczos
algorithm is efficient over sparse matrices but, unfortunately, to the best of our knowledge, there is no theoretical estimation
of its worst-case complexity. Our approach, instead, takes O (κα log |V |) steps.

5. Experimental results

CONCLUDE has been experimented in different fields of application, for example to analyze online social networks and
biological networks. In this article we discuss its application to the following two cases (see Section 5.1): (i) artificially-
generated (henceforth, synthetic) networks with a pre-defined community structure; (ii) network datasets from real-world
applications. We also experimentally studied the behavior of ERW-Kpath algorithm to rank edges according to their ability
of spreading messages in a network.

5.1. Cluster detection

In order to evaluate the performance of our clustering method, we carried out two different types of experiments. The
former, by using synthetic networks for which a pre-built community structure was well defined. The latter, by considering
different graphs describing the structure of some real-world networks.

The purpose of the former set of experiments is to assess the quality of the clustering produced by our algorithm in the
context of a controlled environment in which the features of the networks taken into account are well-known. In particular,
the pre-defined community structure is adopted as a ground truth to evaluate the quality of the partitions obtained by using
our algorithm, and this is done by adopting a measure inherited by information theory (called normalized mutual information)
to establish the accuracy of the partitions with respect to the ground truth.

The second set of experiments, instead, is carried out to evaluate the performance of our method compared against
three other state-of-the-art algorithms in real-world applications. This comparison is performed by considering network
datasets whose correct community structure is not known in advance; to assess the validity of obtained results we exploit
the internal quality measure of network modularity previously presented in Section 2.1. In fact, regardless the model adopted
to finding communities in a network, the network modularity has been commonly adopted to establish if a community
detection method has been able to discover clusters of vertices tightly interconnected among each other and loosely inter-
connected with those belonging to other clusters. We assume that, the higher the values of network modularity provided by
an algorithm, the better the community structure of the network has been unveiled. Given the limitations of the network
modularity – as discussed in Section 2.2 – this approach is only a best-approximation of any robust evaluation method.
Indeed, the problem of evaluating the clustering quality of real-world networks lacking of a ground truth is an open and
urgent problem in current literature.

5.1.1. Synthetic networks
The first set of experiments has been carried out by using the LFR benchmark presented by Lancichinetti and Radic-

chi [29]. In the LFR benchmark a user is required to provided the following information to generate a graph G: (i) Number of
Vertices, denoted as N , and Average Vertex Degree, denoted as 〈k〉. (ii) Power Law exponent in vertex degree distribution denoted
as γ . The vertex degree distribution in G is shaped as k−γ . (iii) Power Law exponent in community size distribution denoted
as β . The size of communities in G follows a power law distribution with exponent equal to β . The sum of the sizes of
all the communities is constrained to be equal to N . (iv) Mixing parameter, denoted as μ. A user can specify a parameter
μ ∈ (0,1) such that each vertex in G shares a fraction 1 − μ of its edges with vertices outside its community and μ edges
with vertices residing in its community. The value μ = 0.5 is the threshold beyond which clusters are no longer defined in
the strong sense (that is, that each vertex has more neighbors in its own cluster than in the others).

To generate our benchmark networks, we adopted the same configuration reported in [29]: (i) N = 1000; (ii) four pairs
of values for γ and β defined as follows: (γ ,β) = (2,1), (2,2), (3,1), (3,2); (iii) for each pair of exponents γ and β , three
values of average degree 〈k〉 = 15,20,25; (iv) for each of the previous combinations, we generated six networks by varying
the mixing parameter μ = 0.1, . . . ,0.6.
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Table 1
Values of normalized mutual information provided by CONCLUDE resolving the clusters in the networks with community structure artificially-generated
according to the LFR benchmark [29].

〈k〉 μ = 0.1 μ = 0.2 μ = 0.3 μ = 0.4 μ = 0.5 μ = 0.6

γ = 2, β = 1
15 0.861 0.761 0.664 0.559 0.409 0.281
20 0.859 0.759 0.663 0.566 0.434 0.298
25 0.856 0.760 0.663 0.560 0.433 0.307

γ = 2, β = 2
15 0.856 0.757 0.664 0.550 0.463 0.317
20 0.859 0.763 0.665 0.555 0.467 0.316
25 0.861 0.761 0.664 0.569 0.469 0.340

γ = 3, β = 1
15 0.851 0.761 0.636 0.522 0.348 0.238
20 0.863 0.768 0.662 0.517 0.409 0.248
25 0.860 0.762 0.665 0.562 0.422 0.283

γ = 3, β = 2
15 0.865 0.767 0.657 0.569 0.407 0.287
20 0.863 0.768 0.670 0.570 0.435 0.297
25 0.863 0.765 0.666 0.568 0.448 0.281

To compute the quality of the results, we adopted the measure called normalized mutual information (NMI) [9]. Such a
measure assumes that, given a graph G , a ground truth is available to verify what are the clusters (said real clusters) in G and
what are their features. Let us denote as A the true community structure of G and suppose that G consists of c A clusters.
Let us consider a clustering algorithm applied on G and assume that it identifies a community structure B consisting of cB

clusters. We define a c A × cB matrix – called confusion matrix CM – such that each row of CM corresponds to a cluster in A
whereas each column of CM is associated with a cluster in B . The generic element CMij is equal to the number of elements
of the real i-th cluster which are also present in the j-th cluster found by the algorithm. Starting by this definition, the
normalized mutual information is defined as

NMI(A, B) =
−2

∑c A
i=1

∑cB
j=1 Nij log(

Nij N
Ni·N· j

)∑c A
i=1 Ni· log(

Ni·
N ) + ∑cB

j=1 N· j log(
N· j
N )

(10)

where Ni· (resp., N· j ) is the sum of the elements in the i-th row (resp., j-th column) of the confusion matrix. If the
considered clustering algorithm would work perfectly, then for each discovered cluster j, it would exist a real cluster i
exactly coinciding with j. In such a case, it is possible to show that NMI(A, B) is exactly equal to 1 [9]. By contrast, if the
clusters detected by the algorithm are totally independent of the real communities then it is possible to show that the NMI
is equal to 0. The NMI, therefore, ranges from 0 to 1 and the higher the value, the better the clustering algorithm performs
with respect to the ground truth.

The performance provided by CONCLUDE, reported in Table 1, shows excellent values of NMI considering the task of
solving the LFR benchmark. For each configuration, the partition provided by our algorithm is compared against the ground
truth built by the LFR benchmark, measuring the goodness of the partition according to the previously-defined normalized
mutual information measure.

CONCLUDE provides in general high values of NMI for the setting of μ = 0.1, . . . ,0.3, which lead to the presence of
strongly defined clusters in the synthetic networks. Moreover, it is worth to note that the values of NMI are stable across
different configurations. Fixed the mixing parameter μ, let the parameters 〈k〉, γ and β vary; their variation reflects on the
feature of the networks generated by the benchmark. We observe, in this scenario, that our strategy works well and con-
sistently according to different network structures and that the performance is independent of particular network features
(such as the degree distribution or the size of clusters present in the network).

5.1.2. Real-world networks
In this section we discuss the results obtained by analyzing different graphs describing real-world networks datasets.

Summary statistics of these networks are reported in Table 2.
In particular, datasets 1–5 represent the undirected networks of coauthors of article appeared in Arxiv,3 as of April

2003 [31], in the field of, respectively, General Relativity and Quantum Cosmology – CA-GrQc, High Energy Physics (Theory) –
CA-HepTh, High Energy Physics (Phenomenology) – CA-HepPh, Astro Physics – CA-AstroPh, and Condensed Matter Physics –
CA-CondMat.

3 Arxiv (http://arxiv.org/) is an online archive for scientific preprints in the fields of Mathematics, Physics and Computer Science, amongst others.

http://arxiv.org/
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Table 2
Values of network modularity provided by CONCLUDE in the context of cluster detection from different real-world network datasets. Our algorithm outper-
forms three of the state-of-the-art solutions, e.g., Louvain Method, COPRA and OSLOM.

No. Network No. vertices No. edges CONCLUDE LM COPRA OSLOM

1 CA-GrQc 5242 28 980 0.883 0.860 0.761 0.696
2 CA-HepTh 9877 51 971 0.806 0.772 0.768 0.653
3 CA-HepPh 12 008 237 010 0.760 0.656 0.754 0.675
4 CA-AstroPh 18 772 396 160 0.663 0.627 0.577 0.596
5 CA-CondMat 23 133 186 932 0.768 0.731 0.616 0.692
6 Facebook-links 63 731 1 545 684 0.664 0.626 0.726 0.391
7 SocialGraph 613 497 2 045 030 0.912 0.891 0.197 0.456

Dataset 6 describes a small sample of the Facebook network, representing its directed friendship graph [45]. Finally,
dataset 7 represents a large sample of the Facebook network collected by Gjoka et al. [22].

This experiment has been designed to quantitatively evaluate the performance of our strategy in real-world applications.
To configure the ERW-Kpath, the values of ρ and β have been tuned as previously suggested. In addition, the value of the
maximum length of the self-avoiding random walks has been set equal to κ = 20.

The results are measured by means of the value of network modularity (formally defined by Eq. (1)) obtained by CON-
CLUDE, compared against those attained by using three different techniques: (i) the already presented Louvain Method (LM),
(ii) COPRA [25], which is a fast clustering detection algorithm based on the principle of label propagation [42], and, finally
(iii) OSLOM [30], a local optimization algorithm able to finding statistically significant clusters.

Prior to presenting the results of our tests, we briefly describe the main features of COPRA and OSLOM.
COPRA (Community Overlap PRopagation Algorithm) relies on a label propagation strategy proposed for the first time by

Raghavan et al. in [42]. The algorithm works in three stages: (i) Initially, each vertex v is labeled with a set of pairs 〈c,b〉,
being c a community identifier and b (belonging coefficient) a coefficient indicating the strength of the membership of v to
the community c; belonging coefficients are normalized so that the sum of all the belonging coefficients associated with v
is equal to 1. Initially, the community associated with a vertex coincide with the vertex itself and the belonging coefficient
is 1. (ii) Then, repeatedly, v updates its label so that the set of community identifiers associated with v is put equal to the
union of the community identifiers associated with the neighbors of v; after that, the belonging coefficients are updated
according to the following formula

bi(c, v) =
∑

w∈N(v) bi−1(c, v)

|N(v)|
being N(v) the set of neighbors of v and bi(c, v) the belonging coefficient associated with v at the i-th iteration. At each
iteration, all the pairs in the label of v having a belonging coefficient less than a threshold are filtered out; in such a case
the membership of v to one of the deleted communities is considered not strong enough. It is possible that all the pairs in
a vertex label have a belonging coefficient less than the threshold. In such a case, COPRA retains only the pair that has the
greatest belonging coefficient and deletes all the others. Finally, if more than one pair has the same maximum belonging
coefficient, below the threshold, COPRA selects at random one of them and this makes the algorithm non-deterministic.
After deleting pairs from the vertex label, the belonging coefficients of each remaining pair are re-normalized so that they
sum to 1. A stopping criterion ensures COPRA ends after a finite number of steps. In such a case, the set of community
identifiers associated with v identify the communities to which v belongs to.

OSLOM (Order Statistics Local Optimization Method) is a multi-purpose technique that aims at managing directed and
undirected graphs. OSLOM is also able to detect overlapping communities and to build hierarchies of clusters.

The strategy of the algorithm to discover clusters in a graph G is as follows: at the beginning a vertex i is selected at
random and it forms the first cluster C = {i}. After that, the q most statistically significant vertices in G are identified and
added to C . Here q is a random number and the significance of a vertex v is a parameter indicating the likelihood that
v can be inserted in C . To formally define the statistical significance, OSLOM considers a random null model, i.e., a class
of networks without community structure. A network G ′ in the random null model is generated by first copying all the
vertices of G in G ′ . After that, multiple pair of edges in G ′ are selected at random and an edge is drawn between them. Due
to this procedure, given a vertex v in G , there will exist a vertex v ′ in G ′ corresponding to w . Analogously, given a subgraph
C in G , there will be a subgraph C ′ in G ′ corresponding to C such that each vertex in C ′ corresponds to a vertex in C . The
null model is expected not to have a community structure and, therefore, it can be used as a benchmark to understand if
a subgraph C in G is a community and to define the statistical significance of a vertex v to C . In particular, we count the
number l1 of vertices linking v with vertices in G; after that, we consider the vertex v ′ corresponding to v in G ′ and we
count the number l2 of edges linking v ′ with vertices residing in C ′ . If l1 > l2 we guess that v is significant to C (and can
be included in it).

A community C can be associated with a score representing its quality; the score of a cluster C indicates to what extent
C contains vertices which have a high statistical significance with it. The main idea of OSLOM is to progressively add and
remove vertices within C so that to improve its score; this procedure is called clean-up.
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The whole process introduced above is repeated several times starting from different nodes in order to explore different
regions of G . This yields a final set of clusters that may overlap.

The outcome of our experimental tests are reported in Table 2. From the analysis of results reported in Table 2, we can
draw some consideration about the performance of the proposed clustering method.

Considering these real-world scenarios, CONCLUDE outperforms all its competitors in terms of attained values of network
modularity. In general, results provided by CONCLUDE are better than those provided by the Louvain Method in average of 5%–
15%, pushing the improvement up to 25% in the case of COPRA and OSLOM. This advantage can be explained considering two
different motivations: (i) our strategy aims at the maximization of the network modularity of a weighted network, producing
weights according to an intrinsic rationale, driven by the ERW-Kpath algorithm, while neither the Louvain Method nor COPRA
or OSLOM (and, in general, most of the state-of-the-art clustering algorithms [17]) are able to produce a weighting for any
unweighted network. (ii) In addition and equally important, our strategy relies both on local and global information, an
aspect which makes CONCLUDE what in recent literature is called a glocal optimization algorithm. In fact, the first step of
our strategy exploits information on a long-range, carrying out a random walker that visits, starting multiple times from
each node, not only the neighborhood, but also those regions of the graph far from the origin of the walk. This global
information is exploited within the second step, the computation of the distance among all pairs of vertices. Finally, local
information is exploited by the modularity optimization strategy inspired by the Louvain Method itself. The final result is a
general improvement of the performance of the clustering procedure of a non-negligible factor, which comes at almost no
cost (in fact, the quality of the partition is proven very good by considering the values of NMI provided in the previous
experiment).

5.2. ERW-Kpath and κ-path edge centrality

In addition to discuss the performance of the clustering method, we here describe some empirical evidence of the κ-path
edge centrality measure as approximated by means of the ERW-Kpath algorithm, which is adopted by CONCLUDE to rank
edges. This is instrumental to understanding the functioning of the glocal optimization.

In particular, in the following we report an experiment aimed at discovering how different values of κ impact on the
final edge centrality. To this purpose, we produce a probability distribution of κ-path values obtained varying the setting
for κ to understand its general behavior.

In detail, we consider the datasets presented in Table 2 separately and apply the ERW-Kpath algorithm varying the κ-
path length as κ = 5,10,20. After that, for a fixed value of κ-path edge centrality L, we compute the probability Pr(L) of
finding an edge with such a centrality value. The corresponding results are plotted in Fig. 1 for the top four largest datasets
(namely, CA-HepPh, CA-AstroPh, CA-CondMat and Facebook-links). To show the scaling behavior of the distributions, for each
plot we adopt a logarithmic scale.

The analysis of these plots highlights some relevant facts. First of all, a heavy-tailed distribution in the edge centrality
values emerges4 in presence of all different values of κ . In other words, if we use different values of κ , the centrality indexes
may change; however, as emerges from the plots, the curves representing κ-path centrality values resemble parallel lines.
This implies that, for a fixed value of κ , say κ = 5, an edge e will have a particular centrality score. But, if κ is increased
from 5 to 10 and, then, from 10 to 20, the centrality of e will be increased always by a constant factor.

This aspect reflects the ability of the ERW-Kpath algorithm to identify those edges which are in fact central in the
structure of the network, and rewarding them with high weights. Intuitively, also those edges which are less relevant will
be still awarded, even if for a smaller number of times, which will lead to lower values of centrality (and, in the end, to
the heavy-tailed distribution). These weights, which are computed according to a global rule (that is, discovering by means
of a random walker those edges which are more likely to be traversed during a process of spreading information on the
given network) are subsequently exploited to compute overall distances among pairs of vertices. Eventually, the distances
computed on the base of global information, will be exploited to identify the network clusters according to local optima
achieved by the modularity optimization greedy strategy. This summarizes the glocal optimization nature of CONCLUDE.

6. Conclusions

This article presents CONCLUDE, an efficient method for detecting clusters in complex networks which is proven to
work well in different domains. An early implementation of this algorithm has been already released and its strengths and
performance might be assessed independently by other authors.

Our ongoing research efforts focus on adopting CONCLUDE in several contexts. We are investigating: (i) the emergence
of a community structure in large online social networks such as Facebook [15,16]; (ii) the assessment of sociological con-
jectures that involve finding clusters according to importance of edges, for example the strength of the weak ties theory [24],
and (iii) enhancing the performance of different state-of-the-art clustering algorithms (such as COPRA [25] or OSLOM [30])
by pre-processing networks by means of the random walk based measure of centrality like the κ-path edge centrality [11].

4 In a log–log scale, a distribution that resembles a straight line depicts a scale-free behavior.
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Fig. 1. The probability distribution of κ-path edge centrality, computed according to different configurations of κ = 5,10,20 for the five largest networks
considered in this article: CA-HepPh, CA-AstroPh, CA-CondMat, Facebook-links and SocialGraph.
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Finally, a long-term research evaluation of our method is planned, in order to cover different domains of application:
for example, the application of CONCLUDE could be promising in the context of Neuroinformatics, applied to the connec-
tome (i.e., the human brain functional network) [33] or Bioinformatics, to detect protein complexes in protein-interaction
networks [36].

Further extensions of CONCLUDE will be designed to face additional scientific challenges, such as the possibility of
discovering overlapping clusters. So far, our algorithm is able to produce a strong partition of the network, but does not
allow partitions to overlap each other. This feature will be instrumental in some contexts in which is meaningful that nodes
contemporary belong to different clusters (for example, in the case of social networks, users might be part of different
communities at the same time).
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