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a b s t r a c t

The study of criminal networks using traces from heterogeneous communication media is acquiring
increasing importance in nowadays society. The usage of communication media such as mobile phones
and online social networks leaves digital traces in the form of metadata that can be used for this type of
analysis. The goal of this work is twofold: first we provide a theoretical framework for the problem of
detecting and characterizing criminal organizations in networks reconstructed from phone call records.
Then, we introduce an expert system to support law enforcement agencies in the task of unveiling the
underlying structure of criminal networks hidden in communication data. This platform allows for sta-
tistical network analysis, community detection and visual exploration of mobile phone network data.
It enables forensic investigators to deeply understand hierarchies within criminal organizations, discov-
ering members who play central role and provide connection among sub-groups. Our work concludes
illustrating the adoption of our computational framework for a real-word criminal investigation.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

We live in a society where ubiquitous connectivity allows mil-
lions of users to communicate and enjoy the services provided by
the Internet and other communication technologies, now even in
mobility, by the technical and commercial success of handheld
devices (smartphones, tablets, etc.). Such type of human communi-
cation activities produces a deluge of metadata and digital traces
that have been studied to understand inter-connectivity and
mobility patterns at scale (Becker et al., 2013; Candia et al.,
2008; Eagle, Pentland, & Lazer, 2008, 2009; Onnela et al., 2007a,
2007b). Online social network services such as Facebook and
Twitter further increase the amount of information available to
describe users’ interests, activities and behaviors (Ahn, Han,
Kwak, Moon, & Jeong, 2007; Benevenuto, Rodrigues, Cha, &
Almeida, 2009; Catanese, De Meo, Ferrara, Fiumara, & Provetti,
2011, 2012; Conover et al., 2013a, Conover, Ferrara, Menczer, &
Flammini, 2013b). Powerful technologies are although prone to
abuse: mobile phone networks and online social media are con-
stantly used to perform or coordinate criminal activities
(Morselli, 2010; Xu & Chen, 2005). Mobile phone networks can
be used to connect individuals involved in criminal activities in

real time, often during real-world criminal events, from simple
robberies to terror attacks. Online social media, instead, can be
exploited to carry out illicit activities such as frauds, identity thefts
or to access classified information.

Criminal network analysis is pivotal when applied to the inves-
tigation of organized crime like terrorism, narcotics trafficking,
fraud, etc. (Xu & Chen, 2005). Criminal organizations are estab-
lished based on the collaboration of criminals who usually form
groups with different roles. The analysis of a criminal network is
thus aimed at uncover the structural schemes of the organization,
its operations and, even more importantly, the flow of communica-
tions among its members. In this respect, law enforcement agen-
cies and intelligence agencies often deal with large amounts of
raw data gathered from various sources, including phone records
and online communication, in order to unveil the network of rela-
tions among suspects. In modern investigative techniques the
analysis of phone records represents a first approach that precedes
a more refined scrutiny covering financial transactions and inter-
personal relations. For these reasons a structured approach is
needed.

The goal of this work is twofold. First, we provide a computa-
tional framework based on theoretical foundations and principles
from network science, forensic science and statistical analysis to
detect and characterize criminal organizations in networks recon-
structed from phone communication records. Then, we propose an
expert system, called LogAnalysis, that implements such
framework.
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The problem of detecting communities in criminal networks is
here formalized as a two-step process: the first step aims at unveil-
ing such communities hidden in larger networks of organic com-
munication involving potentially many individuals, over different
time scales; once such criminal organizations are clearly identified,
the second step involves the study of the relations existing among
the members of the criminal gangs, their communication dynam-
ics, the reconstruction of the their hierarchical relations, to infer
the structure of the entire organization and the roles they play
therein.

Our expert system implements this computational framework
encoding the entire work flow discussed above. LogAnalysis
for example automatizes the import of raw phone call records data,
the removal of ambiguities and redundancies in data, and the pars-
ing and conversion to a graph format readily available for analysis
and exploration. The data model is designed to improve the quality
of the analysis of social relationships observed inside phone call
network data through the integration of visualization and social
network analysis-based statistical metrics. LogAnalysis imple-
ments different state-of-the-art view layouts for promoting fast
and dynamic network exploration. It introduces the possibility of
analyzing the temporal evolution of the connections among indi-
viduals of the network, for example focusing on particular time
windows in order to obtain further insights about the dynamics
of communications before/during/after particular criminal events.
Finally, it provides an unprecedented supervised community
detection set of techniques that allows detectives to interact with
the community detection process, incorporating expert knowledge
to supervise the results and refine the unveiled community struc-
ture at different levels of granularity and resolution.

A number of existing tools support network analysis but only
some of them have been developed for criminal network investiga-
tion. Related to our work we cite commercial tools like COPLINK
(Chen, Zeng, Atabakhsh, Wyzga, & Schroeder, 2003; Xu & Chen,
2005), Analyst’s Notebook1, Xanalysis Link Explorer2 and Palantir
Government.3 Other related prototypes described in academic
papers are Sandbox (Wright, Schroh, Proulx, Skaburskis, & Cort,
2006) and POLESTAR (Pioch & Everett, 2006). LogAnalysis represents
the next-generation criminal investigation expert system in that it
introduces significant improvements over these tools, and it pro-
vides specific support to detect criminal organizations in network
data reconstructed from phone records.

2. Related literature

In this section we provide a background on social network anal-
ysis, and we survey existing literature in criminal network analysis,
with a particular focus on work about communities and communi-
cation dynamics.

Various research streams focus on finding structural properties
of criminal networks, including in phone call communication net-
works (McAndrew, 2000). Understanding network properties such
as the communities present in the network, or the roles that net-
work members play, can help network analysts and police detec-
tives to unveil vulnerabilities and identify potential opportunities
to take destabilizing actions to fight criminal organizations. In
the following, we discuss relevant work aimed at detecting net-
work communities, discovering their patterns of interaction, iden-
tifying central individuals, and uncovering network organization
and structure.

2.1. Background in social networks and models

Literature about social network models is rooted in social sci-
ences: in the sixties, Milgram, 1967 and Travers and Milgram,
1969 analyzed characteristics of real-life social networks, conduct-
ing social experiments in the real world, and in conclusion, propos-
ing the well known small world model. They put into evidence that,
despite their large dimension, social networks usually show a com-
mon property: there exists a relatively short path which connects
any pair of nodes within the network.

Another important concept, introduced by Zachary (1977), is
the community structure. He analyzed a small real-life social com-
munity (i.e., the components of a karate club) and proposed a
model which describes the fission of a social network via cuts
and divisions in sub-groups. Nodes in such groups are densely
interconnected among each other and weakly interconnected with
those belonging to other groups.

Albert, Jeong, and Barabasi (1999) and Albert and Barabási
(2002) introduced a model of network growth which can be
applied to friendship networks, the World Wide Web, communica-
tion networks, etc. The authors proved that such networks share
the same dynamics of growth, called preferential attachment: new
nodes tend to preferentially connect to existing nodes with high
degrees rather than lower degree ones. This characteristic yields
to the emergence of scale-free distributions in the degree of the
nodes, allowing for the presence of hubs and spokes in the
network.

The concurrent presence of the small world effect, the emer-
gence of a community structure and the preferential attachment
mechanism are the three crucial ingredients that characterize the
structure of social networks (Ferrara & Fiumara, 2011).

2.2. Criminal network analysis and community structure

In the latest years, the academic community working on the
application of social network analysis (SNA) to intelligence and
study of criminal organizations has been constantly growing. One
of the main contributions in this field is due to Sparrow (1991),
who focused on the application of SNA in order to identify the vul-
nerabilities of different types of criminal organizations. He high-
lighted three key aspects of Criminal Network Analysis (CNA),
namely: (i) the importance of SNA in order to analyze information;
(ii) the potential of intelligence when applied to the analysis of the
networks; and, (iii) the common results obtained from the collab-
oration of the two sectors. Sparrow also introduced the following
definitions: (i) dimension – the Criminal Networks (CNs) may have
up to thousands elements; (ii) incompleteness – criminal or terror-
istic networks are inevitably incomplete due to the fragmentary or
erroneous information available; (iii) undefined borders – it is dif-
ficult to determine all the relations of each member; and, (iv) dyna-
mism – new connections necessarily imply an evolution of the
structure of the network.

Starting from Sparrow’s work, several authors tried to augment
the superposition between the two fields by analyzing the CNs
with the instruments typical of SNA: this is the case, for example,
of the analysis (Baker & Faulkner, 1993) carried out on illegal net-
works in the field of electric plants, of Klerks’ study (Klerks &
Smeets, 2001) of criminal organizations in Netherlands, and the
network analysis of Iranian government carried out by Renfro
and Deckro (2001). In 2001, Slike (2001) and Brannan, Esler, and
Anders Strindberg (2001) examined the state of research in the
field of terrorism and documented some cases in which it was lack-
ing and empiric. Arquilla and Ronfeldt (2001) summarized the pre-
ceding work and introduced the concept of NetWar and its
applicability to terrorism. In particular, they drew attention to
the differences existing between the analysis of social and criminal

1 i2 - Analysts Notebook. http://www-03.ibm.com/software/products/en/analysts-
notebook/.

2 Xanalysis (2014) – http://www.xanalys.com/products/link-explorer/.
3 Palantir government (2014) – http://www.palantir.com/solutions/.
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networks, and highlighted the usefulness of research in these fields
in order to understand the nature of criminal organizations. Not-
withstanding the fact that the framework proposed by Arquilla
and Ronfeldt provided a novel method to conceive network analy-
sis, these authors received disapprovals because their approach
was considered purely theoretical. Before 2001-09-11 one of major
criticisms came from Carley, Reminga e Kamneva Carley (2006),
concerning the initiatives for destabilizing the dynamic terroristic
networks.

In 2006, Krebs (2002) applied network theories to the analysis
of the Al Qaeda cell responsible of the 2001-09-11 attack. That
work started a series of academic papers in which SNA has been
directly applied to real cases, differently from previous research
which was applied to artificial data or networks. Krebs’ paper is
still one of the most cited works in the field of the application of
SNA to criminal networks and inspired a number of SNA applica-
tions used by intelligence agencies for the counter-terrorism war.

Several studies have been conducted in order to investigate the
community structure of real and online social networks (Fortunato,
2010). The problem of finding communities in a network is often
formalized as a clustering problem. There is one widely adopted
approach to solve this problem, based on the concept of network
modularity, which can be explained as follows: let consider a net-
work, represented by means of a graph G ¼ ðV ; EÞ, which has been
partitioned into m communities; its corresponding value of net-
work modularity is

Q ¼
Xm

s¼1

ls

j E j �
ds

2 j E j

� �2
" #

ð1Þ

assuming ls the number of edges between vertices belonging to the
s-th community and ds is the sum of the degrees of the vertices in
the s-th community. High values of Q imply high values of ls for
each discovered community, yielding to communities internally
densely connected and weakly coupled among each other.

The network modularity is therefore used as fitness function to
solve an optimization problem: several methods exist, including
the Girvan–Newman algorithm and its optimized variants
(Blondel, Guillaume, Lambiotte, & Lefebvre, 2008; Girvan &
Newman, 2002; Newman & Girvan, 2004; Newman, 2006). The
goal of such strategies is that of producing a network clustering
that exhibits a high network modularity. Although such methods
are usually efficient, two limitations exist: first, the modularity
function carries a resolution limit (Fortunato & Barthelemy,
2007) preventing the detection of communities smaller than an
intrinsic scale determined by the network size and its inter-con-
nectivity; moreover, such techniques produce hard partitioning
of the networks thus assigning each node to one and only one
community.

Strategies to work around both limitations exist, and recently
some approaches have been proposed to discover overlapping
communities (Palla, Derényi, Farkas, & Vicsek, 2005; Xie, Kelley,
& Szymanski, 2013), in order to allow nodes to belong to different
communities. Our framework is based on network modularity
maximization methods and therefore the potential impact of such
limitations will be discussed further into details later on. We will
highlight that the ability that LogAnalysis provides to supervise
the community detection process yields to more refined communi-
ties with respect to automatic methods that may suffer from the
above-mentioned limits.

The strength of LogAnalysis consists in the adoption of several
statistical and interactive visualization layout techniques that
improve network analysis while highlighting different aspects
and features of the considered network and identifying and visual-
izing community structures.

3. LogAnalysis: main features

In this section we summarize the main features of LogAnalysis
including metrics and visualization layouts.

3.1. Network metrics

Members of criminal networks dynamically modify their rela-
tions with other members of the network thus resulting in a change
of their role and importance. A series of centrality measures typical
of the Social Network Analysis can help in capturing these changes.

These statistics are used to filter the network view based on
specific node value and highlight their position inside the network.

Degree centrality is defined as the number of direct links a node
has. A node with a high degree can be seen as a hub, an active node
and an important communication channel.

Betweenness centrality measures the extent to which a particular
node lies between other nodes in a network. These intermediate
elements may wield strategic control and influence on many oth-
ers. The core issue of this centrality measure is that an actor is cen-
tral if he lies along the shortest paths connecting other pairs of
nodes. An individual with a high betweenness may be a gatekeeper
in the network. A gatekeeper criminal should often be targeted for
removal because the removal may destabilize a criminal network
or even cause it to fall apart (Carley, 2006).

Closeness centrality is the inverse of the sum of the shortest
paths (geodesics) connecting a particular node to all other nodes
in a network. The idea is that an actor is central if he can quickly
interact with all the others, not only with his first neighbors
(Newman, 2005). In the context of criminal networks, this measure
highlights entities with the minimum distance from the others,
allowing them to pass on and receive communications more
quickly than anyone else in the organization. For this reason, the
adoption of the closeness centrality is crucial in order to put into
evidence inside the network, those individuals that are closer to
others (in terms of phone communications). In addition, high val-
ues of closeness centrality in this type of communication networks
are usually regarded as an indicator of the ability of the given actor
to quickly spread information to all other actors of the network.

Eigenvector centrality is another way to assign the centrality to
an actor of the network based of the idea that if a node has many
central neighbors, it should be central as well. This measure estab-
lishes that the importance of a node is determined by the impor-
tance of its neighbors. In the context of telecom networks,
eigenvector centrality is usually regarded as the measure of influ-
ence of a given node. High values of eigenvector centrality are
achieved by actors who are connected with high-scoring neigh-
bors, which in turn, inherited such an influence from their high-
scoring neighbors and so on. This measure well reflects an intuitive
important feature of communication networks that is the influence
diffusion.

Clustering coefficient (transitivity) of a graph measures the
degree of connectedness of a network. High clustering coefficients
mean the presence of a high number of triangles in the network. Is
well-known in the literature (Wasserman & Faust, 1994) that com-
munication networks show high values of clustering coefficient
since they reflect the underlying social structure of contacts among
friends/acquaintances. Moreover, high values of local clustering
coefficient are considered a reliable indicator of nodes whose
neighbors are very well connected and among which a substantial
amount of information may flow.

3.2. Network layouts

LogAnalysis has been developed as a tool to help forensic detec-
tives in the analysis of phone log records by means of a network

E. Ferrara et al. / Expert Systems with Applications 41 (2014) 5733–5750 5735
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Fig. 1. Log Analysis interface and force-directed layout. This figure shows the criminal network resulting from a case study of 543 nodes and 1229 edges. The node labeled in
rad has been selected by the user. The nodes labeled in yellow are those at distance 1 from the selected node.

Fig. 2. Example of radial view layout. The node selected by the analyst is central in this visualization. The thickness of the edges connecting pairs of nodes is proportional to
the amount of communication flowing between those pairs.

5736 E. Ferrara et al. / Expert Systems with Applications 41 (2014) 5733–5750
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representation. We adopted different state-of-the-art view layouts
for promoting fast exploration and discovery of the analyzed
networks.

It allows to analyze the relational structure of a criminal net-
works and to unveil the mechanisms of communications among
its members. Various types of relations can be categorized by iden-
tifying those members who occupy central positions, those who
play a key position in the communication flows among various
groups (clans), etc. The application also enables to study the
temporal evolution of the criminal network and to highlight some

crucial information regarding the dynamics of the links in
concurrence with criminal events.

3.2.1. Node-link
Phone calls logs infer a social network. The tool mainly employs

the node-link representation in order to visualize networks in
which node was created for each unique cell phone, and an edge
was created for each phone call. This results in a social network
as shown in Fig. 1.

Fig. 3. (a) The Time Filter feature allows to investigate the network structure evolution. Nodes are dynamically engaged or detached according to the time range slider. (b)
The Time Flow scatterplot is helpful to consider the time-dependence of events (i.e., phone calls) in a specific time window and it is crucial to highlight phone call cascades
during criminal events. (c) The Stacked Histogram is helpful to visually summarize the communications among actors elapsed in a temporal interval.

E. Ferrara et al. / Expert Systems with Applications 41 (2014) 5733–5750 5737
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Fig. 4. Community detection using the Girvan Newman algorithm and the Fruchterman–Reingold layout. The sequence shown: (a) a phone call networks of 148 nodes and
210 edges (b) clustered view after 46 edges deleted. In this configuration modified force-directed algorithm visually present communities in circular layout.

Fig. 5. Community layout: Newman’s fast algorithm (Newman, 2004). The algorithm finds fourteen communities, eight of which are collapsed into a single node (For privacy
reasons, photos have been anonymized).

5738 E. Ferrara et al. / Expert Systems with Applications 41 (2014) 5733–5750
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To increase the readability of the network, when the mouse is
passed over a node, first order connections of the node are high-
lighted. Moreover, it is possible to set the distance-based filter in
order to represent only the nodes which fall within a given dis-
tance from the selected node. LogAnalysis also includes panning
and zooming, and it implements the search by means of textual
keys with the subsequent highlighting of nodes matching the
query criteria.

3.2.2. Radial tree
As shown in Fig. 2 Radial tree layout allocates the elements of a

graph in radial positions and defines several levels upon concentric
circles with progressively increasing radii. The algorithm (Yee,
Fisher, Dhamija, & Hearst, 2001) also puts nodes in radial positions
but gives the possibility of varying positions while preserving both
orientation and order.

According to that technique, a selected element is placed
at the center of the canvas and all the other nodes are

subsequently placed upon concentric circles with radii increasing
outwards. This visualization strategy is instrumental in the
context of the forensic analysis because it allows to focus the
attention of detectives on a suspect, and to have a close look
to its connections.

Nodes lying on the circumference of concentric circles, centered
on that node, could be also progressively displaced from the
selected one. Moreover, edges are visualized by using different
thickness, calculated with respect to the number of calls among
the given connected nodes.

3.2.3. Dynamics analysis
Phone call networks are not static and the structure of the

network could change over time. So it is crucial for investigators
‘‘filtering’’ an analyzing the social dynamics of the network with
respect to specific temporal constraints. Our tool provide three
temporal analysis features, shown in Fig. 3, that heightens these
capability:

Fig. 6. Example of community detection with the Newman algorithm, visualization and interactive exploration.

E. Ferrara et al. / Expert Systems with Applications 41 (2014) 5733–5750 5739
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(i) Time filter. It is possible to select a time slice by using a
slider. The structure of the network is filtered accordingly,
removing all the edges representing connections (i.e.,
phone calls) which did not take place in that specific time
window, and insulating (or hiding) those nodes not
involved in the network at that given time. Modiying the
time interval, nodes involved are automatically ‘‘engaged’’
or detached and are attracted or rejected inside/outside
the network.

(ii) Time Flow analyzer considers each single phone call as
an event in a scatterplot. The days are on the x-axis
and the hours on the y-axis. The colors of nodes are
determined by the type of communication (i.e., sent/
received calls and SMS and other type of communica-
tions, etc.). User can zoom in/out the time interval
using a range slider to obtain additional insights about
connections of events and query the data about specific
key world.

Fig. 7. (a) Network visualization in node-link layout of the entire cell phone log data set composto da 381 nodes and 428 in 15 days of activities. Each node is a unique cell
phone, and each edge is a relationship (calls, SMS, MMS, etc.) between them. (b) Overall metrics and (c) centrality measures of the top 15 vertices of the case study network.

5740 E. Ferrara et al. / Expert Systems with Applications 41 (2014) 5733–5750
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(iii) Stacked histogram. In this visualization each node in the net-
work is assigned a stack. The thickness of each stack is accord-
ing to the nodes degree at the time on the horizontal axis. This
feature is helpful to get a picture of the phone call activity of
the set of suspected elapsed during a specific time window
ed in particular before, during and after criminal commission
event. It is helpful to some interesting discoveries. For
instance, why after the peak cell phones not contact each
other? Any why, did the activity increase in a specific date?

4. Criminal network community detection

A criminal network is a special kind of social network with
emphasis on both secrecy and efficiency. Such networks are inten-
tionally structured to ensure efficient communication among

members without being detected (Wiil, Gniadek, & Memon,
2010). Knowledge about the criminal network structure is crucial
to the investigators in order to reveal the functional or operational
nature of the organization.

Typical criminal network information structures that emerge
during investigations include hierarchical structure (Sageman,
2004), cellular structure (Todd & Nomani, 2011) comprised of
cohesive subgroups connected by bridges, and flat structure
(Krebs, 2002). These structures are emergent and evolving as the
criminal network is modeled incrementally.

One of the most relevant features of graphs representing real
systems like criminal networks is the community structure, or
clustering.

The main goal of community detection in criminal networks (in
particular, in phone call networks) is the identification of groups

Fig. 8. Girvan Newman community detection on case study network.

E. Ferrara et al. / Expert Systems with Applications 41 (2014) 5733–5750 5741
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(or, clans) and their structures thanks to information coded in the
topology of the corresponded graph.

In this section we will discuss how we approached the problem
algorithmically and in terms visualization layout. To detect the
community structure of the criminal network discusses as case
study in this paper we use our tool LogAnalysis. This framework
includes two strategies to detect and explore communities:
(i) Girvan and Newman algorithm (Girvan & Newman, 2002)
(in the following, GN) and (ii) a variant based on modularity
optimization, known as Newman’s algorithm (Newman, 2004) fast
enough to support interactive real-time adjustments.

The simple idea behind the GN algorithm is to identify those
edges that interconnect nodes belonging to different clusters and
progressively remove them, so that the clusters are disconnected
and the community structure emerges. The identification of bridge
edges can be obtained by various means. In the case of GN, the
algorithm adopts the edge betweenness centrality.

The following steps describe in detail how the GN algorithm
works: (i) the edge betweenness of all the edges is computed; (ii)
the edge with the highest value of edge betweenness is removed;
(iii) the edge betweenness is computed for the new configuration
and, (iv) the algorithm is repeated going back to step (ii).

The edge betweenness centrality is computed in a OðmnÞ time,
m being the number of the edges and n the number of nodes. It
has to be repeated m times, so the worst computational cost is
Oðm2nÞ, or Oðn3Þ for sparse graphs. Note that, although for large
networks such high computational cost makes this solution often
unfeasible, for criminal networks constituted (most often) by hun-
dreds or at most thousands of nodes, this algorithm works well.

LogAnalysis visually presents the communities identified by GN
via a force-directed node-link layout (Fruchterman & Reingold,
1991). The deletion of an edge affects the structure of the network,
iteration after iteration, and the network is represented accord-
ingly: deleted edges are depicted as transparent. The number of
the edges to be deleted can be chosen interactively. Finally, nodes
are colored according to the cluster they belong to.

Fig. 4(a) illustrates the typical structure of a network represent-
ing the phone calls network of 148 nodes and 210 edges, according
to the node-link layout. Fig. 4(b) shows the network after 46 iter-
ations of the GN algorithm: 10 communities have been detected.
This configuration is a modified force-directed layout in which
community members are visualized using a circular layout.

This characteristic of the GN algorithm is particularly well sui-
ted for the analysis of criminal networks: when the most central
edges are progressively deleted, intermediate structures emerge,
and an appropriate level of clustering can be determined.

The second method used in LogAnalysis, the Newman’s fast algo-
rithm, is a variant of GN aiming to maximize the network modular-
ity function as described in Section 2.2 by means of a greedy
strategy. It is a hierarchical clustering method in which groups of
nodes are progressively aggregated in order to form larger commu-
nities whose modularity increases after the aggregation. At the first
step, n clusters are considered, each composed of a single node.
Edges are added one by one during the procedure. The modularity
of the partitions is computed by taking into account the complete
topology of the network. By adding the first edge to the set of dis-
connected nodes, the number of groups is decreased to n� 1 so
that a new partition is obtained. At each step of the algorithm
the edges to be added are chosen so that the partition obtained
results in an increase, or at least the minimal decrease, of the mod-
ularity with respect to the previous configuration. At each itera-
tion, the variation DQ of modularity is to be computed as a result
of the fusion of two any communities belonging to the running
partition so to allow to choose the best resulting partition. The
algorithm requires n� 1 iterations, therefore its computational
complexity is Oððmþ nÞnÞ, or Oðn2Þ in the case of a sparse graph.
As a consequence, the community detection is feasible in the case
of networks larger than those which can be tackled using the GN
algorithm.

To visually present the Newman’s algorithm results in
LogAnalysis, community are shown within ‘‘convex hulls’’ (like in
Vizster Heer & Boyd (2005)). Additional forces separate the
communities avoiding their overlapping. Besides the visualization
of communities inside the hulls, it is possible to filter and navigate
the network by compressing the clusters around their most
representative (i.e, central) nodes. Fig. 5 shows a Newman
community detection on a 223-node network.

Generally speaking, community detection methods based on
modularity optimization are imperfect: some detected clusters
can be larger with respect to the clans really existing in the net-
work. This effect can be related to the resolution limit (Fortunato
& Barthelemy, 2007) mentioned in Section 2.2. To overcome this
problem, GN and Newman algorithms are combined with a

Table 1
Results of the application of the GN algorithm to the case study. Are shown the edges
which were deleted at each iteration of the EdgeBetweennessClusterer algorithm
along with the incident nodes. Are also shown the edges through which information
can still flow towards all the members of the network or, at least, a large part of it.

N. Clusters N. Edges Vertices

2 Clusters 1 634 25$1
2 576 64$44
3 635 25$33
4 679 5$1
5 651 1$19
6 617 25$42
7 614 43$23
8 615 25$43

3 Clusters 9 254 220$227
10 301 220$169
11 381 169$64
12 681 1$4
13 567 71$4
14 559 1$77
15 616 1$42

4 Clusters 16 610 20$44
17 612 44$20

5 Clusters 18 638 1$23
19 17 368$1
20 306 1$219
21 104 304$1
22 300 220$4
23 299 220$1

6 Clusters 24 639 23$4
25 687 81$4
26 16 368$4
27 304 219$23
28 641 22$23

7 Clusters 29 611 44$25
30 601 50$44

8 Clusters 31 275 222$227
32 255 227$226
33 274 223$227
34 276 221$227
35 273 224$227
36 272 225$227

9 Clusters 37 569 64$71

10 Clusters 38 341 169$199
39 350 169$193
40 347 169$195
41 344 169$197
42 372 169$177
43 375 169$175
44 369 169$179
45 356 169$189
46 359 169$187
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parameter so that users can tune the state of clustering at an given
granularity. Analysts can split/merge the communities into smaller/
bigger groups and can choose configurations that make more sense
for their analysis. This capability is especially useful with dynamic
networks such as telephone call ones, in which interpersonal
relationships and the organization structure may changes over time.

Another feature of LogAnalysis is the possibility of interactively
analyze the communities detected by the Newman algorithm. One
example of this type of investigation is illustrated in Fig. 6. In this
small network of 18 nodes and 30 edges, the algorithm detected 5
communities (see Fig. 6(a)). By setting to zero the parameter that
tunes the number of inter-community hops, and selecting the

Fig. 9. Girvan Newman community detection on case study network. From the overview of the community structure (a) to filltered (b) and local subgroups analyzed in
isolation (c) with interconnected collapsed communities. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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convex hull of a given cluster (for example, the one containing four
nodes, like in Fig. 9(b)), the graph is filtered and collapsed accord-
ingly: Fig. 9(c) shows how the specific cluster connects to the oth-
ers (note that collapsed communities are identified by a red star
and labeled with the id of the node(s) distant one hop from the
selected node in the selected cluster). When the number of inter-
community hops is set to 2, some of the clusters are automatically
exploded (see Fig. 9(d)) indicating that such communities are
reachable in one hop from the selected one, while some others
remain collapsed because their members are farther away from
the selected community.

The set of techniques presented above simplify greatly the anal-
ysis of criminal networks inferred from (possibly large) phone call
data. Our system allows to achieve a trade-off between granularity

of the information presented in the visual interface, and the ability
for the analyst to explore large networks and the criminal commu-
nities therein exposed. In the next section we focus on the charac-
teristics of criminal network by means of a case study
reconstructed from a real criminal investigation supported by our
expert system.

5. A case study

Real police investigations have been successfully carried out
supported by LogAnalysis. In this Section we report a case study
whose results were obtained during a forensic investigation.
Although for sake of privacy protection some information is

Fig. 10. Non coherent examples of clustering produced applying the GN clustering algorithm (Girvan & Newman, 2002).
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obfuscated, in the following we will drive the reader through all
steps of the criminal investigation carried out by means of our
framework.

5.1. The initial configuration

In this case, some people allegedly belonged to a criminal
network. Among the available data about the structure of the
criminal organization, phone logs undoubtedly convey the most
important information that detectives use in order to verify the
existence of interpersonal relationships and the communication
flow.

The initial configuration of the network representing the phone
call connections is shown in Fig. 7. The network has been obtained
from the processing of the log files containing the phone call traffic
during a period of fifteen days among some people allegedly
belonging to a criminal association responsible of a series of rob-
beries, extortions and drug illicit trafficking. LogAnalysis may also
automatically expand metadata on actors of the network, whether

available: in this case (obfuscated) mugshots, and other metadata
(e.g., criminal records, etc.), are autonomously extracted by
consulting other internal police databases. In addition, for anony-
mization purpose, phone numbers are here replaced by numerical
IDs. Information concerning the relational structure and some
important statistical metrics are shown in Fig. 7.

From the analysis of phone contacts among some people in a
given time interval it is also possible to unveil the most important
links in terms of frequencies of relations and flow of information.
Links do not refer to the same type of relations and therefore it
is important to improve the analysis starting from the community
detection. Crucial is the ability to gain as much information as pos-
sible from the topology of the network and then ascertain the
details.

5.2. Finding subgroups

In Fig. 8(a) we show the case study network after the GN algo-
rithm has been executed and 16 communities have been detected.
The assignment of each node to a community is visually encoded

Fig. 11. An example of community detection using the Newman algortihm (Newman, 2004). The convex-hull layout has been adopted for the visualization of the
communities.
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by the different colors used to depict the nodes. To improve the
clarity of the network visualization, we exploit the clustered view
as shown in Fig. 8(b). This configuration adopts a modified force-
directed layout in which nodes of the same community (same col-
ors) form macro-nodes visualized with a circular layout. In such a
way, inter-connectivity among communities is captured better.
The macro-nodes can be further exposed to reveal intra-commu-
nity relationships (see Fig. 8(c)).

In this case we were mainly interested not only to those nodes
which occupy prominent positions. Rather we focused on those
edges whose deletion during the execution of the algorithm
unveils new structural configurations which in turn can be investi-
gated using other information available to police detectives. This
analysis will result of fundamental importance for the successful
outcome of the investigation.

Thus, the analysis of a criminal network can be accomplished
using LogAnalysis as follows: (i) data extracted from heterogeneous
sources must be parsed; (ii) a mathematical model in form of a net-
work is derived; (iii) a node-link layout for the visual representa-
tion is chosen; (iv) communities are detected and visualized; (v)
the member of each cluster is analyzed in depth and, (vi) step
(iv) is refined using the results of step (v).

The choice of the best level of granularity during the clustering
is not automatic. In this case study it was derived from Table 1,
where are shown the edges which were deleted and the number
of clusters which were obtained step by step until the best config-
uration was obtained.

In Table 1 are shown the edges and the nodes through which
information can flow towards all the members of the network or,
at least, a large part of it. A detailed analysis demonstrated,

Fig. 12. Community detection of a time-varying criminal network.
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however, that the more central edges are not always responsible of
driving the majority of the information. They are, of course, impor-
tant edges from a topological point of view and ‘‘lethal’’ when
regarded as members of a criminal network, but only on a theoret-
ical viewpoint. An important consideration follows: the algorithms
of clustering, when used to analyze a criminal network help to
detect the most close groups of the network, but the nature of
the relations must be carefully evaluated using information which
can not be directly drawn from the mathematical model or its
graphical representation. The Social Network Analysis applied to
our case study for example shows that the node with the highest
degree (i.e., the highest number of phone calls) has a lower
betweenness centrality if compared to other nodes. In fact, crimi-
nal networks heavily employ secrecy to escape investigations
and, in particular, a policy of internal communications according
to which the most important members issue orders to a very lim-
ited number of members which in turn make them known to an
increasing number of less important members until the leaves of
the network are informed.

In our case study, the nodes having the highest number of com-
munications (i.e., the highest degree) represent the lieutenants of
the criminal organization and not necessarily the boss of the clan,
while the edges traversed by the highest number of shortest paths
(i.e., having the highest betweenness centrality) represent the
most important links among the various groups.

Moreover, the granularity of the clustering allows to identify
the members and the edges which represent the ideal target when
trying to hinder the criminal activities of the clan.

The next step of analysis is carried out by using the Newman
algorithm. Fig. 9(a) shows communities embedded in convex hulls.
Since the visualization might be cluttered and compromise the
interpretation of the results, we here exploited the community
compression techniques described above to improve the quality
of the representation. For example, by setting the inter-community
hop filter to a value of 2, Fig. 9(b) shows the communities, and the
respective members, that can be reached from the selected nodes
at most in two hops. Fig. 9(c) represents the egonet of the selected
user, and the summary of communities connected in one hop.

5.3. Overlapping communities

As already discussed in Section 2, an important aspect in the
analysis of communities is represented by the potential overlap
of communities. Both the algorithms implemented in LogAnalysis

actually perform a partition of the network, thus assigning each
of the nodes to exactly one cluster. Often this is not a correct rep-
resentation, at least on a semantic basis, of the network. In a spe-
cific case such ours, even the algorithmic approaches described in
Palla et al. (2005) and Sun, Gao, and Shan Han (2011) may produce
questionable results because of the multiplicity of meanings which
can be given to any edge of the network. For this reasons, we
decided to implement LogAnalysis in such a way which allows
the user to choice the level of clustering in order to approximate
the results. The network shown in Fig. 4 is an example of the level
of clustering we believed to be the most appropriate according to
the aforesaid criteria.

Some examples follow. Fig. 10 shows a situation in which the
GN algorithm can produce a series of results in which the outcom-
ing partition does not correspond to the results of the studied net-
work. In the example, only a portion of the entire network is
shown. After the deletion of 28 edges (see Fig. 10(a)), a community
is obtained (colored in violet) which is composed of more groups.
The deletion of two more edges leads to the configuration shown
in Fig. 10(b). Some of the nodes belonging to the blue cluster
should belong also to the green cluster. In this example, even if
the clustering obtained through the application of the edge
betweenness centrality is undoubtedly correct from the computa-
tional point of view, nonetheless is debatable from the semantic
point of view. Our conclusion is that in such situations an auto-
matic computation should be supported by the assistance of the
analyst. Other examples are shown in Fig. 10(c) and (d). In these
cases we have the same results when partitioning the nodes among
yellow and green cluster (see Fig. 10(c)) and when partitioning the
nodes among blue and brown cluster (see Fig. 10(d)). In each of the
aforesaid examples, the interconnected nodes could belong to one
or the other group or both, or more simply they could belong to a
group of its own which has very few links to other groups.

Also the interconnections among various communities have
been analyzed using the Newman community detection algorithm
(Newman, 2004). Fig. 11 shows the initial phase of the execution of
the algorithm. In Fig. 11(a) only one cluster has been detected
which is composed of the nodes interconnected among the exter-
nal clusters represented by the nodes ‘‘Elio’’ and ‘‘Judy’’, while in
Fig. 11(b), Qmax has been interactively decreased to a previous
lower value. As a consequence, the interconnected nodes are sub-
divided and new communities emerge.

The in-depth analysis carried out on the members of the clus-
ters interconnected shown in Fig. 11 and the temporal analysis
accomplished with LogAnalysis allowed the investigators to dis-
cover that some clans belonging to the criminal network had
worked with a certain degree of autonomy and were responsible
of some murders. It turned out from the investigations that these
clans had the task of committing murders. In Fig. 12 are shown
the clans at times t1 and t2.

Some additional remarks follow. Applying Newman community
detection algorithm with an automatic clustering produces a parti-
tion according to which the criminal network is composed of 14
clusters. This can be seen from the dendrogram shown in Fig. 14.
The maximum partition density is 0:014 and the largest commu-
nity is composed of 84 nodes. As already seen, this clustering is
not coherent with the real structural subdivision of the criminal
network as it emerged from the supervised interactive community
detection combined with additional comparisons and in-depth
examinations obtained from other informative sources. Neverthe-
less this result was very interesting in that important information
regarding some members of the network emerged.

In particular, from the analysis of the different levels of cluster-
ing interactively selected, and from the observation of the relative
variations in the obtained configurations, we identified which ele-
ments of the network were affected mostly.

Fig. 13. Stacked histogram showing the phone call traffic carried out by each
community in the time interval of 15 days.
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This is shown in Fig. 14(b), with respect to the most connected
nodes and how they belong to the 14 different communities. For
example, node 102 belongs to clusters 1 and 13, while the most
important nodes belonging to cluster 14 are 16, 240, 241, 242
and 243.

We also computed the modularity of the various communities,
that is a measure of how dense are the connections among the

nodes within the clusters in respect to the connections between
nodes in different clusters. Fig. 14(c) shows the modularity of each
cluster of the criminal network.

The analysis of the distribution of phone calls carried out by
each ‘‘clan’’ is a method generally very useful it must be decided
if a good level of clustering has been obtained after the execution
of the community detection algorithm (see Fig. 13). The goal of this

Fig. 14. The figure shows: (a) the dendrogram resulting from the community detection; (b) the community membership matrix for the most connected nodes; (c) the
distribution of modularity for the clustering resulting from the dendrogram cut of subfigure (a). Colors in the membership matrix correspond to those of the histogram in
subfigure (c). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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analysis is twofold: first, it identifies the groups among which the
largest number of phone calls, texts, MMS took place, second, it
highlights the peaks of the stream of communications related not
to single users but rather to each cluster as a whole, on the occa-
sion of a crime.

6. Conclusions

In the latest decade or so there has been an active involvement
of academic researchers in the study of terrorist and criminal net-
works to improve public safety. In this respect, Social Network
Analysis has proved a valuable tool in order to ascertain the central
members of criminal networks, the existence of subgroups, the
interactions among individuals and subgroups, the flow of infor-
mation in the network, the sensitive members and/or relations
whose removal could eventually lead to the destruction of the
network.

In this context, the analysis of phone call networks is crucial to
gain fundamental information about inter-connectivity and com-
munication among criminals, and to progress fruitfully the investi-
gations. The study of information flow allows to identify those
individuals who play a key role inside the criminal organization,
or connect different subgroups. Statistical approaches also provide
remarkable insights, for example if one considers the quantity of
information and their temporal distribution with reference to a
given criminal act. Moreover, the spatial distribution of such
events can be taken into account, since it gives insights with
respect to the identification of suspected individuals and their
most frequent locations.

In this work we presented LogAnalysis, an expert system that
allows for semi-supervised detection of criminal communities in
networks reconstructed from phone call records. We discussed
some of its features describing how they are instrumental to study
criminal networks, presenting a case study inspired by a real crim-
inal investigation. This allowed us to unveil few primary character-
istics of criminal communities in real world phone call networks.

The analysis of criminal networks cannot be reduced, however,
to the study of the relations established by means of phone calls.
We must take into due account a larger amount of data, possibly
originated from various sources. This is the case, for example, of
physical meetings and financial transactions. Also time plays an
important role, in that relations and transactions usually may or
may not happen simultaneously.

To analyze such types of data a radical extension of the capabil-
ities of LogAnalysis is necessary. For this reason we are designing a
natural successor of LogAnalysis, conceived to study multiplex and
temporal criminal networks. Such expert system will integrate and
deal with multiple data sources including online social network
data and financial records, and it will be integrated with other
law enforcement databases to infer and learn new associations in
a fully unsupervised way.
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