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Abstract: In this work we present a large-scale community structure

detection and analysis of Facebook, which gathers more than 500

millions users at 2011. Characteristics of this social network have

been widely investigated during the last years. Related works focus

on analyzing its community structure on a small scale, usually from a

qualitative perspective. In this study we consider a significant sample

of the network. Data, acquired mining the Web platform, have been

collected adopting two different sampling techniques. We investigated

the structural properties of these samples in order to discover their

community structure. Two well-known clustering algorithms, optimized

for complex networks, have been here described and adopted. Results

of our analysis show the emergence of a well-defined community

structure inside Facebook, that is characterized by a power law

distribution in the size of the communities. Moreover, the identified

communities share an high degree of similarity, regardless the adopted

detection algorithm.
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1 Introduction

The problem of modeling and studying the structure of networks attracted the
attention of a huge amount of work, in several areas, such as Social Sciences,
Physics and Computer Science. Different applications of the network analysis
include the study of social, biological and technological networks. During the last
years the Online Social Network (OSN) phenomenon spread at an incredible high
growth rate. The increasing popularity of platforms of online social-networking
attracted the attention of both computer and social scientists because of unique
characteristics and social importance of these networks. Several work has been
conducted to analyze properties and features of OSNs both from a quantitative
and a qualitative perspective.

The social role of Online Social Networks is to help people to enhance the
connections among them in the context of Internet. On the one hand, these
relationships are very tight over some areas of the social life of each user, such
as family, colleagues, friends, and so on. On the other, the outgoing connections
with other individuals not belonging to any of these categories are less likely
to happen. This effect reflects in a phenomenon called community structure. A
community is formally defined as a sub-structure present into the network that
represents connections among users, in which the density of relationships within
the members of the community is much greater than the density of connections
among communities. From a structural perspective, this is reflected by a graph
which is very sparse almost everywhere but dense in local areas, corresponding to
clusters (i.e., communities).

A lot of different motivations to investigate the community structure of a
network exist. From a scientific perspective, it is possible to put into evidence
interesting properties or hidden information about the network itself. Moreover,
intuitively individuals that belong to a same community, share some similarities
and possibly have common interests or are connected by a specific relationship in
the real-world. These aspects arise a lot of commercial and scientific applications;
in the first category we cite, for example, marketing and competitive intelligence
investigations and recommender systems. In fact, users belonging to a same
community could share tastes or interests in similar products. In the latter,
models of diseases propagation and distribution of information have been largely
investigated in the context of social networks.

The problem of discovering the community structure of a network has been
approached in several different ways. A common formulation of this problem is
to find a partitioning V = (V1 ∪ V2 ∪ · · · ∪ Vn) of disjoint subsets of vertices of
the graph G = (V,E) representing the network, in a meaningful manner. The
probably most popular quantitative measure to evaluate the community structure
in a network, namely network modularity (usually indicated by Q), has been
proposed by (Girvan and Newman, 2002; Newman and Girvan, 2004). In its wider
formulation (Duch and Arenas, 2005), the problem of finding a partitioning of a
given network that maximizes the network modularity value is not computationally
affordable because it is NP-hard. For this reason, several approximate approaches,
for example based on heuristics, optimization strategies or swarm intelligence
techniques, have been advanced. They are discussed in Section 2.
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Two intuitive problems can be already sketched. The first one arises when
partitioning the vertices into disjoint subsets, because each entity of the network
could possibly belong to several different communities. The problem of overlapping
communities has been already investigated in literature (Palla et al., 2005; Lee
et al., 2010; McDaid and Hurley, 2010). The latter problem is represented by
networks in which it makes sense that an individual does not belong to any group.
In the formulation introduced above, we imposed that, regardless the overlapping
communities are considered or not, each individual is required to belong at least
to one group. This requirement could make sense for several networks, but is
unaffordable in those cases in which some individuals could remain isolated from
the rest of the network, as recently put into evidence by (Hunter et al., 2008). Such
a case commonly happens in real and online social networks, as reported by recent
social studies (Hampton et al., 2007).

In this work we analyze the community structure of Facebook on a large scale.
We acquire two different samples of the network of relationships among the users
of the social network. Each of them contains millions entities and, for this reason,
we adopt two fast and efficient community detecting algorithms optimized for
complex networks, working without any a-priori knowledge, in order to discover
the emergent community structure.

The rest of the paper is organized as follows. Section 2 covers the background
and the related work about detecting the community structure within a network,
with particular attention to the specific area of Online Social Networks. Because
the details about the Facebook social network structure are not public, we shortly
depict in Section 3 the process of data collection, in order to make it clear how
it has been possible for us to sample the Facebook social network. Two different
sampling techniques are here presented and adapted to the domain of our problem.
Section 4 introduces some details about two fast community detection algorithms
we have adopted to detect the community structure of Facebook. Experimental
results, performance evaluation and data analysis are shown in Section 5. We
describe the methodology behind this work, illustrating the aspects on which we
focused during our experimentation. Details related to the formulation of the
problem and the choice of the solutions are illustrated. Section 6 concludes the
paper, summarizing our achievements and depicting some interesting future issues.

2 Related Work

Several studies have been conducted in order to investigate the community
structure of real and online social networks (Karrer et al., 2008; Shah and
Zaman, 2010; Traud et al., 2011; Zhao et al., 2011). They all rely on the
algorithmic background of detecting communities in a network. There are several
comprehensive surveys to this problem, addressed to non practitioner readers, such
as (Porter et al., 2009; Fortunato, 2010).

The related literature could be classified in two categories: i) partitioning
algorithms; ii) overlapping nodes community detection algorithms.
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2.1 Partitioning Algorithms

In its general formulation, the problem of finding communities in a network is
intended as a data clustering problem, thus solvable assigning each vertex of the
network to a cluster, in a meaningful way. There are essentially two different and
widely adopted approaches to solve this problem; the first is the spectral clustering
(Hagen and Kahng, 2002) which relies on optimizing the process of cutting the
graph; the latter is based on the concept of network modularity.

The problem of minimizing the graph-cuts is NP-hard, thus an approximation
of the exact solution can be obtained by using the spectral clustering (Ng et al.,
2001), exploiting the eigenvectors of the Laplacian matrix of the network. We recall
that the Laplacian matrix L of a given graph has components Lij = kiδ(i, j)−Aij ,
where ki is the degree of a node i, δ(i, j) is the Kronecker delta (that is, δ(i, j) =
1 if and only if i = j) and Aij is the adjacency matrix representing the graph
connections. This process can be performed using the concept of ratio cut (Wei
and Cheng, 1989; Hagen and Kahng, 2002), a function which can be minimized in
order to obtain large clusters with a minimum number of outgoing interconnections
among them. The main limitation of the spectral clustering is that it requires in
advance to define the number of communities present in the network and their size.
This makes it unsuitable if one wants to discover the number and the features of
existing communities in a given network. Moreover, as demonstrated by (Shah and
Zaman, 2010), it does not work very well in detecting small communities within
densely connected networks.

The network modularity concept can be explained as follows: let consider a
network, represented by means of a graph G = (V,E), which has been partitioned
into m communities; its corresponding value of network modularity is

Q =

m∑
s=1

[
ls
|E|
−
(

ds
2|E|

)2
]

(1)

assuming ls the number of edges between vertices belonging to the s-th community
and ds the sum of the degrees of the vertices in the s-th community. Intuitively,
high values of Q imply high values of ls for each discovered community; thus,
detected communities are dense within their structure and weakly coupled among
each other. Because the task of maximizing the function Q is NP-hard, several
approximate techniques have been presented during the last years.

Let us consider the Girvan-Newman algorithm (Girvan and Newman, 2002;
Newman and Girvan, 2004; Newman, 2006b). It first calculates the edge
betweenness B(e) of any given edge e in a network S, defined as

B(e) =
∑
ni∈S

∑
nl∈S

npe(ni, nl)

np(ni, nl)
(2)

where ni and nl are vertices of S, np(ni, nl) is the number of the shortest
paths between ni and nl and npe(ni, nl) is the number of the shortest paths
between ni and nl containing e. The GN algorithm is based on the assumption
that it is possible to maximize the value of Q deleting edges with a high
value of betweenness. This, because they connect vertices belonging to different
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communities. Starting from this intuition, first the algorithm ranks all the edges
with respect to their betweenness, thus removes the most influent, calculates the
value of Q and iterates the process until a significant increase of Q is obtained. At
each iteration, each connected component of S identifies a community. Its cost is
O(n3), being n the number of vertices in S; intuitively, it is unsuitable for large-
scale networks.

A tremendous number of improved versions of this approach has been provided
in the last years, such as the fast clustering algorithm provided by (Clauset
et al., 2004; Clauset, 2005), running in O(n log n) on sparse graphs; the extremal
optimization method proposed by (Duch and Arenas, 2005), based on a fast
agglomerative approach with O(n2 log n) time complexity; the Newman-Leicht
(Newman and Leicht, 2007) mixture model based on statistical inferences; other
maximization techniques by (Newman, 2006a) based on eigenvectors and matrices.

Concluding, another different approach of partitioning is the “core-periphery”,
introduced by (Borgatti and Everett, 1999; Everett and Borgatti, 1999); it relies
on separating a tight core from a sparse periphery.

2.2 Overlapping Nodes Community Detection

Recently, the problem of discovering the community structure in a network
included the possibility of finding overlapping nodes belonging to different
communities at the same time. One of the first approach has been presented by
(Palla et al., 2005) and has attracted a lot of attention by the scientific community.
A lot of efforts have been spent in order to advance novel possible strategies. For
example, an interesting approach has been proposed by (Gregory, 2007), that is
based on an extension of the Label Propagation Algorithm adopted in this work.
On the other hand, an approach in which the hierarchical clustering is instrumental
to find the overlapping community structure has been proposed by (Lancichinetti
et al., 2009). Finally, during latest years some novel techniques have been proposed
(McDaid and Hurley, 2010; Lee et al., 2010).

2.3 Our Contribution to the State-of-the-art

Our contribution can be summarized as follows. As the best of our knowledge
this work presents for the first time the analysis of the community structure of a
large Online Social Network by adopting quantitative techniques. To do so, first
of all we collect a sample of the Facebook social network. Once data have been
gathered, the emergent community structure is put into evidence and analyzed
both from a quantitative and a qualitative perspective. The results of our analysis
enrich the current knowledge on the features of the communities that characterize
Online Social Networks and possibly it is helpful in order to better understand
those processes that underly the formation of groups and communities in social
networks.
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3 Data Collection

Although the first purpose of this work is to analyze the community structure of
the Facebook social network, some information about the process of data collection
are here provided. Furnished details help in better understanding the further
investigation on how the sampling methodology and the adopted techniques of
information collection may affect the obtained results.

In the following, we briefly discuss the architecture of the designed sampling
platform, the logic behind the process of data acquisition and preparation.

3.1 Sampling the Facebook Network

In order to collect data from a social network, several possible direction of
investigation could be planned. In our case, for example, Facebook users’ profile are
enriched by a lot of semantic information regarding their activity and the contents
they produce or share on the platform. In detail, it could be possible to extract
and analyze information that characterizes the users of a given social network, on
a large scale. Several interesting research topics investigate issues of great interest
such as sentiment analysis, information propagation and the diffusion of consensus
about common arguments among users of social networks.

Facebook, similarly to other Online Social Network services, does not provide
information about the social structure of its network. Similarly, they do not diffuse
personal information about users, the content they like or produce, they way they
adopt the social network and their social behaviors. This, in order to protect the
privacy of its users and for commercial interests. In fact, the main business of
Facebook is based on exploiting personal data to provide targeted ads services to
advertising companies. For all these reasons, a semantic analysis of the Facebook
social network could be unfeasible without occurring in issues.

In the light of these assumptions, during the phase of extraction of data
from the Facebook social network, we did not inspect, acquire or store personal
information about users or their social behaviors. In particular, the aim of this
work is the reconstruction of the social connections among users.

To this purpose, we designed a crawler which visited the publicly accessible
friend-list Web pages of specific users, selected with respect to a particular
criterion (details follow). After that, the friendship relations among discovered
users have been stored in an anonymized format. At the end of this process, a
partial sample of the whole graph has been obtained, which contains millions nodes
and edges (i.e., users and friendship connections among them).

In this work we used the acquired data to devise, as the best of our knowledge,
the first large scale community structure investigation of the Facebook social
network.

3.2 The Data Collection Platform Architecture

The architecture of the designed sampling platform can be schematized as
in Figure 1. We devised a Java cross-platform data mining agent, which
implements the logic of the crawler, relying on the Apache HTTP Library
(http://httpd.apache.org/apreq) as interface for transferring data through the
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Figure 1 The data collection platform architecture

Figure 2 The logic of the Facebook crawler

Web. While running (possibly, in parallel), the agent(s) query the Facebook
server(s) in order to acquire the specific friend-list Web pages of the required users.
Received data are processed and collected on our server in anonymized format.
Finally, at the end of the data collection process, data are post-processed, cleaned
and filtered according to further requirements.

3.3 The Sampling Methodology

Regardless the sampling algorithm implemented, the logic of the designed mining
agent is reported in Figure 2. The devised automaton requires a preparative step
during which some configuration aspects are set up, such as adopted sampling
algorithm, termination criterion/a to be met to conclude the execution, and
maximum running time. The mining task could be started from scratch or be
resumed from a previous state. Thus, during its execution, the agent(s) visit
the Web pages containing the friend-list of the user to be inspected, following
the directives of the sampling methodology algorithm, and extract the friendship
relations represented in there. Data are stored in a compact format in order to
save I/O operations and then are anonymized, in order not to store any kind of
possibly private data (such as the user-IDs). The data collection process concludes
if any of the defined termination criteria is met.

3.3.1 The breadth-first-search visit

The first sampling methodology has been implemented as a breadth-first-search
(BFS), an uninformed traversal algorithm with the goal of visiting a graph.
Starting from a “seed” node, it explores its neighborhood; then, for each neighbor,
it visits its unexplored neighbors, and so on, until the whole graph is visited (or,
alternatively, a termination criterion is met). This sampling technique has several
advantages, such as the ease of implementation and the efficiency. For these reasons
it has been adopted in a variety of OSNs mining studies (Chau et al., 2007; Mislove
et al., 2007; Gjoka et al., 2010; Catanese et al., 2011). On the other hand, bias
of data towards high degree nodes have been proved to by (Kurant et al., 2010)
to be introduced by incomplete BFS visits. We further investigate effects of this
phenomenon on our results in Section 5.1.2.
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During our experimentation, the adopted “seed” was the user profile used
to login-on the Facebook platform. The termination criteria were: i) at least
the third sub-level of friendship was completely covered; ii) the mining process
exceeded 10 days of running time. The observation of a short time-limit ensured
a negligible effect of evolution of the network structure. The dimension of the
obtained (partial) graph of the Facebook network has been adopted as yardstick
for the uniform sampling process.

3.3.2 The uniform sampling

The second sampling methodology that has been chosen is a rejection-based
sampling technique, namely “Uniform” sampling. The main advantage of this
technique is that it is unbiased for construction, at least in its formulation for
the Facebook network. Details about its definition are provided by (Gjoka et al.,
2010). The process consists of the generation of an arbitrary number of user-
IDs, randomly distributed in the domain of assignment of the Facebook user-ID
system. In our case, it is the space of the 32-bit numbers, thus the maximum
amount of assignable user-IDs is 232, about 4 billions. As August 2010, the
number of subscribed users on the Facebook platform was about 500 millions,
thus the probability of randomly generating an existing user-ID was about 1/8.
Thus, first we generated a number of random user-IDs, lying in the interval
[0, 232 − 1], equal to the dimension of the BFS-sample multiplied by 8. Then, we
queried Facebook for their existence. Our expectation was to obtain a sample of
comparable dimensions with respect to the BFS-sample. We obtained a slightly
smaller sample, due to the restrictive privacy settings imposed by some users, who
configured their profile preventing the public accessibility of their friend-lists.

3.4 Description of the Acquired Datasets

All the user-IDs contained in the samples have been anonymized using a 48-bit
hashing functions, in order to hide references to the users and their connections.
Data have been post-processed for a cleansing step, during which all the duplicates
have been removed, and the integrity and congruency of the datasets have been
verified. The characteristics of the datasets are reported in Table 1. The size of
both the samples is in the order of millions nodes and edges. These networks reflect
some of the well-known properties of the social networks:

• The “Small world” effect: it is typical of networks with very small diameter,
with respect to the number of nodes, and a huge connected component;

• The power law degree distribution: the network presents a huge number of
nodes having a small number of connections and vice-versa;

• The emergence of a community structure: the aim of this work is to
investigate the presence of a community structure in the considered Facebook
social network.

In detail, the connected component of the “Uniform” sample includes about
the 95% of the total nodes (differently with respect to the connected component
of the BFS sample that covers all the network). This seems that a significantly
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Dataset No. Visited Users No. Discovered Neighbors No. Total Edges Coverage

BFS 63.4K 8.21M 12.58M 98.98%
Uniform 48.1K 7.69M 7.84M 94.96%

Avg. Degree Biggest Eigenvalue Effective Diameter Avg. Clustering Coefficient Density

396.8 68.93 8.75 0.0789 0.626%
326.0 23.63 16.32 0.0471 0.678%

Table 1 BFS and Uniform datasets description (crawling period: August 2010)

small part of the users appears to be disconnected from the giant component that
connects all the others. In this context, a small part of these users remains isolated
in the network. Their contribution to the features of the community structure of
the social network is not relevant and for this reason during our further analysis
they are not taken into account. However, their existence is relevant to the study
of different social phenomena, for example the social isolation (Hampton et al.,
2007). The value of the clustering coefficient, that has been proven to be a relevant
indicator of the possible emergence of a community structure inside a network, is
high for both the samples. Similarly, also the value of density of connections among
nodes is high.

In the light of these clues, in the following we introduce the methodology that
has been adopted in order to verify the existence of a well-defined community
structure inside the Facebook social network.

4 Community Structure Discovery

The detection of a community structure inside a large network is a complex
and computationally expensive task. Community detection algorithms such those
originally presented by (Girvan and Newman, 2002; Newman and Girvan, 2004)
or by (Hagen and Kahng, 2002), are not viable solutions, respectively because too
expensive for the large-scale of the Facebook sample we gathered, or because they
require a priori knowledge. Fortunately, several optimizations have been proposed
during last years. To our purposes, we adopted two fast and efficient optimized
algorithms, whose performance are the best to date proposed in literature. LPA
(Label Propagation Algorithm), presented by (Raghavan et al., 2007), and FNCA
(Fast Network Community Algorithm), more recently described by (Jin et al.,
2009), have been adopted to detect communities from the collected samples of the
network. A description of their functioning follows, in particular in the context of
our study.

4.1 Label Propagation Algorithm

LPA (Label Propagation Algorithm) (Raghavan et al., 2007) is a near linear time
algorithm for community detection. Its functioning is very simple, considered its
computational efficiency. LPA uses only the network structure as its guide, is
optimized for large-scale networks, does not follows any a priori defined objective
function and does not require any prior information about the communities.
In addition, this technique does not require to define in advance the number
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of communities present into the network or their size. Labels represent unique
identifiers, assigned to each vertex of the network.

Its functioning is reported as described in (Raghavan et al., 2007):

Step 1 To initialize, each vertex is given a unique label;

Step 2 Repeatedly, each vertex updates its label with the one used by the greatest
number of neighbors. If more than one label is used by the same maximum
number of neighbors, one is chosen randomly. After several iterations, the
same label tends to become associated with all the members of a community;

Step 3 Vertices labeled alike are added to one community.

Authors themselves proved that this process, under specific conditions, could
not converge. In order to avoid deadlocks and to guarantee an efficient network
clustering, they suggested to adopt an “asynchronous” update of the labels,
considering the values of some neighbors at the previous iteration and some at the
current one. This precaution ensures the convergence of the process, usually in few
steps. (Raghavan et al., 2007) ensure that five iterations are sufficient to correctly
classify 95% of vertices of the network. After some experimentation, we found that
this forecast is too optimistic, thus we elevated the maximum number of iterations
to 50, finding a good compromise between quality of results and amount of time
required for computation.

A characteristic of this approach is that it produces groups that are not
necessarily contiguous, thus it could exist a path connecting a pair of vertices in
a group passing through vertices belonging to different groups. Although in our
case these condition would be acceptable, we adopted the suggestion provided by
the authors to devise a final step to split the groups into one or more contiguous
communities. Authors proved its near linear computational cost.

Recently, a great attention has been captured by the possibility of discovering
the community structure in a network finding overlapping nodes belonging to
different communities at the same time. An interesting approach has been
proposed by (Gregory, 2007), that is based on an extension of the Label
Propagation Algorithm previously described.

4.2 Fast Network Community Algorithm

The second efficient algorithm that has been chosen for our analysis is called
FNCA (Fast Network Community Algorithm) (Jin et al., 2009). The main
advantage of FNCA is that it does not require to define in advance the number of
communities present into the network, or their size. This aspect makes it suitable
for the investigation of the unknown community structure of a large network, such
as in the case of Facebook.

FNCA is an optimization algorithm which aims to maximize the value of the
network modularity function, in order to detect the community structure of a given
network. The network modularity function has been introduced by (Newman and
Girvan, 2004) and has been largely adopted in the last few years by the scientific
community (Boccaletti et al., 2006; Du et al., 2007; Fortunato, 2010).
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Given an undirected, unweighted network G = (V,E), let i ∈ V be a vertex
belonging to the community r(i) denoted by cr(i); the network modularity function
is defined as follows

Q =
1

2m

∑
ij

[(
Aij −

kikj
2m

)
× δ (r(i), r(j))

]
(3)

where Aij is the element of the adjacency matrix A = (Aij)n×n representing
the network, whose value is Aij = 1 if i and j are tied by an edge, Aij = 0
otherwise. The function δ(u, v), namely Kronecker delta, is equal to 1 if u = v and

0 otherwise. The value ki represents the degree of a vertex i, defined as ki =
∑
j

Aij

while m is the maximum possible number of edges in the network, defined as

m =
1

2

∑
ij

Aij .

Equation 3 can be rewritten as

Q =
1

2m

∑
i

fi, fi =
∑

j∈cr(i)

(
Aij −

kikj
2m

)
(4)

where the function f represents the difference between actual and expected
number of edges which fall within communities, from the “perspective” of each
node of the network, thus indicating how strong the community structure is.

Any node of the network could evaluate the value of its f function only
considering local information (i.e., information about its community). Moreover,
if the local effect of relabeling a node, without changing the labels of others, is
that the value of its f function increases, the global effect is that also the network
modularity increases.

Given these assumptions, (Jin et al., 2009) devised a fast community detection
algorithm, optimized for complex networks, adopting local information strategies.
FNCA relies on the consideration that, in networks with an emergent community
structure, each node should be labeled alike one of its neighbors, otherwise it is a
cluster itself. Thus, each node needs to calculate its f function only for the labels
of its neighbors, instead of for all the nodes of the network.

Moreover, authors put into evidence that, if the labels of neighbors of one node
do not change at last iteration, the label of that node is less likely to change in the
current iteration. This provides a speed-up strategy, putting nodes which satisfy
this condition, in an “inactive” state, not requiring the update of their labels.
Because this weak condition may fail, it is important to immediately “wake up”
those nodes which do not satisfy this constraint anymore, at each iteration.

Also this algorithm, like LPA, could not converge. In our experimentation we
defined a termination criterion of 50 iterations, obtaining good results also with
our large-scale samples.

The time complexity of FNCA is O(T · n · k · c), where T is the number of
maximum iterations, n the number of total nodes, k the average degree of all
nodes, and c the average community size at the end the algorithm execution.
Furthermore, with the support of the analysis in literature (Leskovec et al., 2009),
for large-scale networks, FNCA is a near linear algorithm.
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Algorithm No. Communities Q Time (s)

BFS (8.21 M vertices, 12.58 M edges)

FNCA 50,156 0.6867 5.97e+004
LPA 48,750 0.6963 2.27e+004

Uniform (7.69 M vertices, 7.84 M edges)

FNCA 40,700 0.9650 3.77e+004
LPA 48,022 0.9749 2.32e+004

Table 2 Results of the Community Detection on Facebook

5 Experimentation

The experimental results obtained by using LPA and FNCA on the Facebook
network are reported in Table 2. Both the algorithms show good performance
while applied to this network. A very compact community structure has been
highlighted by using both the algorithms. In detail, resulting values of Q are almost
identical with respect to the considered sample; moreover, the number of detected
communities is very similar.

5.1 Methodology of Investigation

By analyzing the obtained community structures we considered the following
aspects: i) the distribution of the dimensions of the obtained clusters (i.e. the
number of members constituting each detected community), and, ii) the qualitative
composition of the communities and the degree of similarity among different
sample sets (i.e., those obtained by using different algorithms and sampling
techniques).

5.1.1 Community distribution: Uniform sample

The analysis of the community structure of a network from a quantitative
perspective may start with the study of the distribution of the dimension of the
communities. Our investigation started considering first the “Uniform” sample,
which is known to be unbiased for construction. Results obtained are adopted
to investigate the possible bias introduced by the BFS sampling technique, as
discussed in the following.

As depicted by Figures 3 and 4, results obtained by using the two different
algorithms on the “Uniform” sample are interesting and deserve explanations. In
detail, analytical results (as reported in Table 2) and figures put into evidence
that both the algorithms identified a similar amount of communities, which is
reflected by almost identical values of network modularity in the two different sets.
Moreover, identified communities are themselves, the most of the times, of the
same dimensions, regardless the adopted community detection algorithm.

These aspects lead us to advance different hypothesis on the characteristics of
the community structure of Facebook detected on the unbiased “Uniform” sample.
The first consideration regards the distribution of the size of the communities.
Both the distributions obtained by using the LPA and the FNCA algorithm show
a characteristic power law distribution. This is emphasized by Figures 3 and 4,
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which represents the distributions of the dimension of communities obtained by
using, respectively, FNCA and LPA, applied on the “Uniform” sample. In Figure
3, the clusters size distribution obtained by using FNCA is fitted to a power law
function (γ = 0.45) which effectively approximates its behavior. Similarly, Figure 4
represents the clusters size distribution produced by LPA, which gives results in a
shorter interval (i.e., [0,500] with respect to [0,1000] used in Figure 3), well fitting
to a power law function (γ = 0.37). A first consideration is that the communities
detected by using the LPA algorithm appears to be slightly displaced to bigger
values with respect to those represented by the FNCA in the first quartile, while
the number of communities greater than 400 members quickly decreases.

These results permit us to draw two conclusions:

• On a large scale, to the best of our knowledge, this is the first experimental
analysis that proves that the size of the communities emerging in an Online
Social Networks follows a well-defined power law distribution. This result
is novel and validates the hypothesis, proved on a small scale on several
real-world social networks (for example, (Traud et al., 2011)), that not only
the degree distribution follows a scale-free behavior, but even the processes
of aggregations among individuals of an Online Social Network can be
effectively described by communities whose dimensions follow a power law.
This results in the following point.

• Our analysis puts into evidence that, even on a large scale that is
well represented by an OSN such as Facebook, people tend to aggregate
principally in a large amount of small communities instead of in very
large communities. This, at the same time, in our opinion demystifies some
theoretical approaches of community detection such as the core-periphery
(Borgatti and Everett, 1999; Everett and Borgatti, 1999).

• A rejection-based sampling methodology (such as the “Uniform” sampling) is
appropriate to describe the community structure emerging on a large sample
of a Online Social Network. Differently with respect to other approaches, it
seems to preserve those characteristics that influence the distribution of the
friendship relations thus well representing the community structure of large
networks.

5.1.2 Community distribution: BFS sample

Results obtained by analyzing the BFS distribution, show partially different
characteristics. Figures 5 and 6 show the cluster dimensions distribution by using,
respectively, FNCA and LPA applied to the BFS sample. Both these distributions
show some fluctuations if compared to the power law distribution adopted as
possible fitting function. By using the FNCA (see Figure 5), the peak of the
distribution is represented by those communities constituted of 10–30 members,
then it sharply slopes depicting a first fluctuation around clusters of dimension
around a hundred of members, and a second minor fluctuation around the three
hundreds of members. A similar behavior is shown by the LPA algorithm (see
Figure 6).
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Figure 3 FNCA Power law distributions
on the “Uniform” sample

Figure 4 LPA Power law distributions on
the “Uniform” sample

Figure 5 FNCA Power law distribution
on the BFS sample

Figure 6 LPA Power law distribution on
the BFS sample

The differences in the behavior between the BFS and “Uniform” samples
distributions reflect accordingly with the adopted sampling techniques. In fact,
in related works (Gjoka et al., 2010; Kurant et al., 2010), has been put into
evidence the influence of the adopted sampling methods on the characteristics of
the obtained sets, in particular focusing on the possible bias introduced by using
the BFS algorithm, towards high degree nodes, if the BFS visit is incomplete (such
as in our case, in which a sample of the whole network has been collected).

We could draw the conclusion that the adoption of the BFS sampling technique
is not appropriate in the case one would to investigate the community structure of
a large network whose complete sampling is not feasible, for example because of
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constraints imposed by the network itself or by its dimension (such in the case of
Facebook). On the other hand, the BFS sampling has been proved to be effective
and efficient in the opposite cases.

5.1.3 Overlapping Rate between Distributions

The idea that two different algorithms could produce different community
structures is not counterintuitive, but in our case we have some indications that the
obtained results could share an high degree of similarity. To this purpose, in the
following we investigate the similarities among the community structures obtained
by using the two different algorithms, FNCA and LPA. This is represented by
the overlapping rate calculated considering the distributions of the community
dimensions from a quantitative perspective. To do so, we adopt a divergence
measure, called Kullback-Leibler divergence, that is defined as

DKL(P ||Q) =
∑
i

P (i) log
P (i)

Q(i)
(5)

where P and Q represent, respectively, the probability distribution that
characterizes the behavior of the LPA and the FNCA community sizes, calculated
on a given sample. In detail, let i be a given size such that P (i) and Q(i) represent
the probability that a community of size i exists in the distribution P and Q.
Intuitively, the KL divergence is helpful if one would like to calculate how much
different is a distribution with respect to a given one.

In particular, being the KL divergence defined in the interval 0 ≤ DKL ≤ ∞,
the smaller the value of KL divergence between two distributions, the more similar
they are. In the light of this assumption, we calculated the pairwise KL divergences
between the distributions discussed above, finding the following results:

• On the “Uniform” sample:

– DKL(LPA||FNCA) = 0.007722

– DKL(FNCA||LPA) = 0.007542

• On the BFS sample:

– DKL(LPA||FNCA) = 0.003764

– DKL(FNCA||LPA) = 0.004292

The values found by adopting the KL divergence put into evidence a
strong correlation between the distributions calculated by using the two different
algorithms on the two different samples.

From a graphical standpoint, we put into evidence the correlation found by
means of the KL divergence, as follows. In Figures 7 and 8 a semi-logarithmic scale
has been adopted. In Figure 7, we plotted together the distributions depicted in
Figures 3 and 4 that represent the community structure of the “Uniform” sample.
Similarly, Figure 8 shows the distributions presented in Figures 5 and 6 regarding
the BFS sample.

By analyzing the distribution of the community sizes of the “Uniform” set, it
emerges a perfectly linear behavior, that characterizes both the FNCA and the
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LPA results. This agrees with the power law distributions previously emphasized,
that well depict the behavior of the emergent community structure in that
sample. Additionally, the two distributions are almost overlapping. A similar
consideration holds for the BFS sample. Even though the distributions suffers of
the spikes previously discussed, a strong correlation between them has been put
into evidence both by the KL divergence and by the graphical representation.
These indications gave us the opportunity of investigating from a qualitative
perspective the characteristics of the community structure of Facebook.

In detail, a different consideration regarding the qualitative analysis on the
similarity of the two different community structures is provided in the next
Section. That kind of investigation aims at evaluating what members constitute
the communities detected by adopting the algorithms previously introduced. Our
findings prove that, regardless the adopted community detection algorithm, the
communities discovered, not only are characterized by similar distributions of sizes,
but are also mainly constituted of the same members. This finding proves that
the emergent community structure in Facebook is well characterized and defined,
according with the quantitative results we discussed above.

Figure 7 FNCA vs. LPA (UNI) Figure 8 FNCA vs. LPA (BFS)

5.1.4 Community structure similarity

In this Section we introduce the methodology of investigation of the similarity
among different community structures. A community structure is represented by
a list of vectors which are identified by a “community-ID”; each vector contains
the list of user-IDs (in anonymized format) of the users belonging to that specific
community; an example is depicted in Table 3.

In order to evaluate the similarity of the community structures obtained by
using the two algorithms, FNCA and LPA, a coarse-grained way to compare two
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Community-ID List of Members

community-ID1 {user-IDa; user-IDb; . . . ; user-IDc}
community-ID2 {user-IDi; user-IDj ; . . . ; user-IDk}

. . . {. . . }
community-IDN {user-IDx; user-IDy; . . . ; user-IDz}

Table 3 Representation of community structures

sample sets would be by adopting a simple measure of similarity such as the
Jaccard coefficient, defined as

J(A,B) =
|A ∩B|
|A ∪B|

(6)

where A and B represent the two community structures. While calculating the
intersection of the two sets, communities differing even by only one member would
be considered different, while an high degree of similarity among them could be
envisaged.

A more convenient way to compute the similarity among these sets is to
evaluate the Jaccard coefficient at the finest level, comparing each vector of the
former set against all the vectors in the latter set, in order to “match” the most
similar ones. Under these assumptions, the Jaccard coefficient could be rewritten
in its vectorial formulation as

J(v,w) =
M11

M01 +M10 +M11
(7)

where M11 represents the total number of shared elements between vectors v and
w, M01 represents the total number of elements belonging to w and not belonging
to v, and, finally M10 the vice-versa. The result lies in [0, 1]. The more two
compared communities are similar, or, in other words, the more the constituting
members of two compared communities are overlapping, the higher the value of
the Jaccard coefficient computed this way.

An almost equivalent way to compute the similarity with an high degree of
accuracy would be by applying the Cosine similarity, among each possible couple
of vectors belonging to the two sets. The Cosine similarity is defined as

cos(Θ) =
A ·B
||A|| ||B||

=

∑n
i=1Ai ×Bi√∑n

i=1 (Ai)2 ×
√∑n

i=1 (Bi)2
(8)

where Ai and Bi represent the binary frequency vectors computed on the list
members over i.

Once matched the most similar pairs of communities between the two compared
sets, the mean degree of similarity is computed by

N∑
i=1

max (J(v,w)i)

N
and

N∑
i=1

max (cos(Θ)i)

N
(9)
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where max(J(v,w)i) and max (cos(Θ)i) mean the highest value of similarity
chosen among those calculated combining the vector i of the former set A with all
the vectors of the latter set B, respectively adopting the Jaccard coefficient and
the Cosine similarity. We obtained the results as in Table 4.

Degree of Similarity FNCA vs. LPA

Metric Dataset In Common Mean Median Std. D.

J BFS 2.45% 73.28% 74.24% 18.76%
Uniform 35.57% 91.53% 98.63% 15.98%

Table 4 Similarity degree of community structures

As intuitively deducible by analyzing Figures 7 and 8, not only the community
structures calculated by using the two different algorithms, FNCA and LPA, follow
similar distributions with respect to the dimensions, but also the communities
themselves are constituted mostly by the same members or by a congruous amount
of common members.

From results it emerges that both the algorithms produce a faithful and
reliable clustering representing the community structure of the Facebook network.
Moreover, while the number of identical communities between the two sets
obtained by using BFS and “Uniform” sampling, is not so high (i.e., respectively,
'2% and '35%), on the contrary the overall mean degree of similarity is very high
(i.e., '73% and '91%).

Considered the way we compute the mean similarity degree, as in Equation
9, this is due to the high number of communities which differ only for a very
small number of components. Finally, the fact that the median, which identifies
the second quartile of the samples is, respectively, '75% and '99% demonstrates
the strong similarities of the produced result sets.

All these considerations graphically emerge by analyzing Figures 9 and 10,
in which the higher the degree of similarity, calculated by using the Jaccard
coefficient, the denser the distribution, in particular in the first quartile, becoming
obvious for values near to 1. The unbiased characteristics of the “Uniform” sample
reflect also in Figure 9, in which the similarity degree of the community structure
is evident because the most of the values lie on the boundary zone near to 1.
The degree of similarity of the community structure of the BFS sample, shown in
Figure 10, appears more distributed all over the second half of the distribution,
becoming denser in the first quartile.

5.1.5 Resolution limit and outliers

Recently (Fortunato and Barthélemy, 2007), in the context of detecting
communities by adopting the network modularity as maximization function, a
resolution limit has been put into evidence. In particular, in (Fortunato and
Barthélemy, 2007), authors found that modularity optimization could fail in the
detection of communities smaller than a given threshold that is strictly dependent
on the characteristics of the studied network. This results in another effect, that
is the creation of large communities that include a large part of the nodes of the
network, without affecting the global value of network modularity.
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Figure 9 Jaccard FNCA vs. LPA (UNI) Figure 10 Jaccard FNCA vs. LPA (BFS)

Starting from the assumption that the characteristics of the network could be
affected by the adopted sampling methodology, we investigated the effect of the
resolution limit put into evidence by (Fortunato and Barthélemy, 2007) on our
datasets. The results of our analysis respectively on the BFS and the “Uniform”
samples could be discussed separately. On the former dataset, a small number
of communities whose dimensions exceed those obtained in the distributions
previously discussed, have been identified. Possibly, these large communities have
been identified because of the resolution limit suffered by FNCA and LPA, that
are both based on the modularity maximization.

Table 5 reports the amount of outliers, i.e., those communities that largely
exceed the average dimension and are suspected of suffering from the problem of
the resolution limit. From this analysis, it seems that LPA suffers the resolution
limit slightly less than FNCA. In fact, a smaller number of outliers has been found
by using the LPA method, with respect to the adoption of the FNCA algorithm,
in the context of the BFS sample.

On the contrary, the “Uniform” sample apparently does not cause any problem
of resolution limit, proving once again that this sample could be considered as
ground-truth. By using the FNCA on the “Uniform” sample, a large number
of communities whose dimension is slightly greater than one thousand members
appear, that is coincident to the final part of the tail of the power law distribution,
depicted in Figure 3. The LPA method even in the “Uniform” sample provides
possibly the most reliable results, without incurring in any possible effect of
resolution limit.

5.2 Discussion of Results

A summary of the results achieved with our analysis of the Facebook network can
be drawn as follows.

• First of all, in this paper we put into evidence, as the best of our knowledge
for the first time on a large scale, that the community structure of an online
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Amount with respect to Number of Members

Set Alg. ≥ 1K ≥ 5K ≥ 10K ≥ 50K ≥ 100K

BFS FNCA 4 1 2 1 1
LPA 1 0 2 0 1

UNI FNCA 81 0 0 0 0
LPA 0 0 0 0 0

Table 5 The effect of the resolution limit on our datasets

social network presents a clear power law distribution of the dimension of
the communities.

This result is independent with respect to the algorithm adopted to discover
the community structure, and even (but in a less evident way) with
respect to the sampling methodology adopted to collect the datasets. In
detail, the former consideration is supported by the evidence that, by
using both LPA and FNCA (two state-of-the-art well-known algorithm to
detect the community structure of large networks), the dimension of the
discovered communities fits well to a power law distribution with exponent
approximately equal to 0.4. The latter result appears clear if we take in
consideration the “Uniform” sampling methodology, that produced a dataset
that could be adopted as ground-truth for forthcoming studies. On the other
hand, this is the first experimental work that proves on a large scale the
hypothesis, theoretically found by (Kurant et al., 2010), of the possible bias
towards high degree nodes introduced by the BFS sampling methodology for
incomplete visits of large graphs.

• As far as concerns the qualitative analysis of results obtained during our
experimentation, we put into evidence that the Facebook social networks
not only is characterized by a clear community structure, and that the
size of the communities follow a power law distribution, but also that this
community structure is qualitatively well defined. In fact, regardless the
algorithm adopted in order to detect the underlying communities, it emerges
that those communities detected by adopting LPA and FNCA share an high
degree of similarity.

In detail, if one admit to accept a small degree of dissimilarity (say, ε)
among the components of the communities identified by using two different
algorithms, it appears that the results show an high degree of similarity
both by considering the “Uniform” and the BFS samples. In the former case,
the maximum value of ε that represents the difference among any pair of
communities, is not more than approximately the 8%. In the latter, this ε
must be raised up to the 26%. This means that the communities identified by
the two methods share at least approximately a 92% of members in common
for the case of the “Uniform” samples, and a 74% for the BFS case.

• As for the community detection algorithm, we found that the LPA method
has been proved to be a good choice among the heuristic methods based on
local information in order to discover the underlying community structure
of a large network. Results compared against another well-known similar
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method, called FNCA, seems to be slightly better, in particular if we consider
the well-known problem of the resolution limit (Fortunato and Barthélemy,
2007) that affect the process of community detection on a large scale.

In detail, LPA works well even in the context of a sample like the BFS
that could possibly be affected by some bias towards high degree nodes (as
recently put into evidence by (Kurant et al., 2010)). Results provided by the
two algorithms on the “Uniform” sample are comparable. Even though the
computational cost of these two techniques is very similar, we experienced
that the LPA method performs slightly better that FNCA on our datasets.

For all these reasons, we can conclude that the more appropriate approach in
order to study the community structure of large networks is to adopt a rejection-
based sampling methodology (such as the “Uniform” sampling). Moreover, both
the LPA method and the FNCA technique appear appropriate to this purpose.
Recently, a novel high performance approach for the community detection, called
“Louvain method” (Blondel et al., 2008) has been presented. The performance of
this technique in the context of the community structure discovery on large scale
Online Social Networks such as Facebook deserves further investigation.

6 Conclusion

In this work we presented, as the best of our knowledge, the first large-scale
community structure investigation of the Facebook social network. We described
the process of data collection, adopting two different techniques of sampling in
order to obtain comparable data, to discover bias and to validate our assumptions.
We adopted two fast and efficient algorithms already presented in literature,
specifically optimized to detect the community structure on large-scale networks,
such as Facebook, consisting of millions entities. A very strong community
structure emerges by our analysis, and several characteristics have been highlighted
by our experimentation, such as a typical power law distribution of the dimension
of the clusters. We finally investigated the degree of similarity of the different
community structures obtained by using the two algorithms on the respective
samples, putting into evidence strong similarities.

A large-scale qualitative analysis of such a huge social network is challenging.
For example, it is not trivial to infer motivations underlying groups formation. In
order to enhance the accuracy of qualitative studies of these phenomena, visual
representations of data on community structure, interconnections among clusters
and community members would help. As for future work a useful contribution
would consist of designing a tool capable of providing meaningful graphical
representations of the community structure of a complex network. Several tools
have been already devised, capable of efficiently represent complex networks for
visual analysis purposes, and the extension of their features to represent the
community structure of complex networks would be worthy of further efforts.

Another interesting research field that is acquiring relevant attention during
last years regards the overlapping community structure detection. In fact, in a
social network may exist nodes which belong to multiple, different communities.
In our opinion, this aspect is worthy of further investigations, in particular in the
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context of Facebook. A possible approach could be, for example, by comparing
sets, representing the community structure of the network, obtained by using
both standard algorithms for community detection and overlapping community
detection algorithms.
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