Media Coverage

Emilio Ferrara (Professor of Computer Science at USC) & (HUmans | MAchines | Networks | Social Systems) Lab


Podcasts & Media


Tech Crunch Podcast: Technotopia 


Faculty Profile: Emilio Ferrara from USC Viterbi on Vimeo.



Spotlight: How Emotions Spread On Twitter from USC Viterbi on Vimeo.


The Rise of Social Bots from CACM on Vimeo.


Press Coverage

  1. Trump posted a fake Taylor Swift image. AI and deepfakes are only going to get worse this election cycle – LA Times
  2. AI could transform health care, but will it live up to the hype?Science News
  3. Rapid spread of election disinformation stokes alarmThe Hill
  4. USC researchers offer a glimpse inside the right-wing echo chamber on X and Telegram – FastCo
  5. Researchers uncover an information operation threatening the 2024 U.S. Presidential Election – USC News
  6. How AI deepfakes test voter confidence and election integrity – The Christian Science Monitor
  7. What Are The Risks of Living in a GenAI Synthetic Reality? – Election Integrity Initiative
  8. Charting the Landscape of Nefarious Uses of Generative Artificial Intelligence for Online Election Interference– Election Integrity Initiative
  9. Online ‘likes’ for toxic social media posts prompt more − and more hateful − messagesThe Conversation
  10. Social media trolls are inspired by ‘likes’ — not hate: studyNew York Post
  11. Eliminating bias in AI may be impossible – a computer scientist explains how to tame it instead – The Conversation
  12. As Twitter’s new owner, Musk gets his chance to defeat botsCBS News
  13. Musk now gets chance to defeat Twitter’s many fake accountsThe Associated Press (republished in over a hundred other news sites)
  14. Musk wars with Twitter over his buyout deal  on TwitterDaily Herald
  15. Twitter May Be Poised to Become a Hellscape Just in Time for the MidtermsSlate
  16. Will AI turn the tide in midterm elections?The American Bazaar
  17. Elon Musk announces content moderation council for TwitterMint
  18. Fusing communications with computer science to track down social media manipulatorsUSC News
  19. Why the polls were so far off in the 2020 electionFast Company
  20. Spotting political indicators without the pollsAxios
  21. Study Considers a Link Between QAnon and Polling ErrorsThe New York Times
  22. Were voters manipulated by QAnon a force behind Trump’s ‘red wave’ in 2020 election?USA TODAY
  23. Russian Disinformation: All Bot But No Bite? – NextGov
  24. Good Bots, Bad Bots, and What You Can Do About Both – F5 Labs
  25. Elon Musk wars with Twitter over his buyout deal – on Twitter – AP News
  26. Musk puts Twitter buy ‘on hold,’ casting doubt on $44B deal – AP News
  27. The systemic factors wedging a persistent gender gap in science – COSMOS
  28. Researchers find fake news about controversial topics contributes to political polarization – Phys.org
  29. Elon Musk says his deal to buy Twitter is on hold – CNN
  30. The next-generation bots interfering with the US electionNature
  31. Twitter Bots Poised to Spread Disinformation Before ElectionThe New York Times
  32. Researchers voice concern over spread of disinformation on social media about US poll campaignsThe Week
  33. Twitter Bots Promote Right-Wing Conspiracies, Paper ShowsDefense One
  34. Twitter Beware: That QAnon Account May Be a BotNational Interest
  35. Twitter bots poised to spread disinformation before electionForbes India
  36. Twitter Bots Poised to Unfold Disinformation Earlier than ElectionLatest News
  37. Researchers voice concern over spread of disinformation on social media about US poll campaignsDevDiscourse
  38. Researchers voice concern over spread of disinformation on social media about US poll campaignsOutlook
  39. Researchers voice concern over spread of disinformation on social media about US poll campaignsIndia TV
  40. Disinformation within the 2020 Presidential ElectionThink It Positive
  41. Americans who seek political insight and information on Twitter should know Snopes
  42. Study identifies thousands of Twitter bots amplifying conspiracy theories ahead of the U.S. electionsVentureBeat
  43. Watch out for this misinformation on election dayThe World News
  44. USC study says bots and conspiracy theorists infest Twitter chatter around upcoming electionKNX Los Angeles (CBS Radio)
  45. Disinformation rules in buildup to US presidential electionsOridessa Post
  46. Election 2020 chatter on Twitter busy with bots and conspiracy theoristsUSC News
  47. How bots threaten to derail the 2020 U.S. electionsVentureBeat
  48. Social Media Used To Spread Coronavirus Disinformation, And Patient Groups Are Fighting BackNPR
  49. Segregated communities of polarized Twitter users are shaping online conversations about COVID-19PsyPost
  50. Beware of Bots Amid Election Year and Coronavirus PandemicReform Austin
  51. Who’s a Bot? Who’s Not?The New York Times
  52. The epic battle against coronavirus misinformation and conspiracy theoriesNature
  53. AI can distinguish between bots and humans based on Twitter activityNew Scientist
  54. Laziness is sure sign it’s not a botThe Times
  55. Bot or Not? AI looks at Twitter behavior to sort real accounts from fakeDigital Trends
  56. Laziness is the key human trait that tells us apart from artificially intelligent ‘bots’ on social mediaDaily Mail
  57. Study reveals behavioral differences between bots and humans that could inform new machine learning algorithmsTechXplore
  58. Researchers develop AI-based system to detect Twitter botsGadgets Now
  59. Bot or not? A.I. looks at Twitter behavior to sort real accounts from fakeBrinkwire
  60. AI Can Distinguish Between Bots, Humans Based on Twitter ActivityCommunications of the ACM
  61. What are the characteristics of human beings who have not been able to reproduce social media bots that continue to evolve like humans?Gigazine
  62. AI study of Twitter bots reveals boredom is what separates us from machinesTNW
  63. What’s human and what’s not when we talk?COSMOS
  64. Researchers train AI to spot difference between bots and human users on Twitter based on their activity patternsComputing
  65. Tiredness could be ‘human signature’ used to detect bots on TwitterE&T
  66. AI can spot a bear bot at 20 pacesFudzilla
  67. Online Behavioral Signatures Aid Development of Bot Detection SoftwareCourthouse News Service
  68. Bot detector may now be able to see clear ‘human signature’ in tweetsSiliconRepublic
  69. Researchers train AI to detect Twitter botsIndian Express Indulge
  70. Laziness is very important: it’s what makes us human, and what may help us stop online spamIndia Times
  71. This AI can now detect Twitter bots: See how it worksIndia TV
  72. USC Researchers Release Public Coronavirus Twitter Set for AcademicsUSC
  73. How malicious Twitter bots evolve to evade detectionThe Irish Times
  74. Twitter ‘Bots’ Becoming More ‘Human,’ Will Influence 2020 Presidential Election, New Research Study SaysInquisitr
  75. As 2020 Election Nears, Twitter Bots Have Only Gotten Better at Seeming HumanAdWeek
  76. Social media bots becoming more human and difficult to detect, study showsE&T
  77. Twitter Bots Are Becoming More Human-LikeDefenseOne
  78. Bots evolving to better mimic humans during electionsHelpNet Security
  79. Modern Politics: Social Media Bots Will Be Harder To Detect During 2020 ElectionStudyFinds
  80. Fake Accounts On Social Media Now Able To Copy Human BehaviourNewsGram
  81. Bots harder to discern from humans have multiplied in online ‘arms race’ – SiliconRepublic
  82. Get ready for more humanlike bots, better deep-fake videos and wall-to-wall disinformation in 2020 race – The Baltimore Sun
  83. Bots might prove harder to detect in 2020 elections – EurekAlert!
  84. Bots in the TwitterspherePEW Research Center
  85. Social Media Bots Deceive E-cigarette Users – Scientific American
  86. Twitter bots were more active than previously known during the 2018 midterms – CNBC
  87. Majority of Twitter bots affecting US elections originated from Russia and Iran – Devdiscourse
  88. About 20% of election posts on Twitter last fall were ‘bots,’ study says – Breitbart
  89. Thousands of Twitter bots active during 2018 US mid-term elections – The Economic Times
  90. How Twitter bots get people to spread fake news – ScienceNews
  91. Study: It only takes a few seconds for bots to spread misinformation – ArsTecnica
  92. Bots actually target and pursue individual influencers – EurekAlert!
  93. The charge of the chatbots: how do you tell who’s human online? – The Guardian
  94. Facebook’s Secret Weapon for Fighting Election Interference: The Government – Bloomberg
  95. Surge in anonymous Asia Twitter accounts sparks bot fears – The Japan Times
  96. The endless game of cat and mouse with spammers – Eureka
  97. Fake news is about to get a lot worse. That will make it easier to violate human rightsThe Washington Post
  98. The Big, Bad Bot Problem – The Ringer
  99. Twitter Cracks Down on Bot Abuse – How Stuff Works
  100. Conservatives amplified Russian trolls 30 times more often than liberals in 2016 – Vox
  101. US conservatives spread tweets by Russian trolls over 30 times more often than liberals – MIT Tech Review
  102. How to Stop Russia From Wrecking Election 2018 – Daily Beast
  103. Twitter has been ignoring its fake account problem for yearsColumbia Journalism Review
  104. Twitter’s huge bot problem is out of the bagCNET
  105. Putin’s Pro-Trump Trolls Just Targeted Hillary Clinton and Robert Mueller – Mother Jones
  106. Twitter urged firms to delete data during 2016 campaign – POLITICO
  107. Bot-hunting Twitter bot sniffs out bogus political tweets – TechCrunch
  108. This new Twitter account hunts for bots that push political opinions – Quartz
  109. Lies, statistics and Twitter – Millennium Post
  110. Social media bots are a real problem and California may regulate them – Medianama
  111. Watch: Five Ways the Internet Is Destroying Society – IEEE Electronics 360
  112. Ending fake news means changing how Wall Street values Facebook and Twitter – Quartz
  113. Trolls, bots and fake news: the mysterious world of social media manipulation – Newsweek
  114. Twitter Bots Distorted the 2016 Election—Including Many Likely From Russia – Mother Jones
  115. Researcher Emilio Ferrara talks about the rise of fake news and botnets – Tech Crunch
  116. These Scientists Wanted To Understand Twitter’s Bot Armies, So They Built Their Own – Fast Company
  117. Senator Slams Twitter’s Disclosure On Russian Meddling As ‘Inadequate On Every Level’ – Forbes
  118. Twitter’s Disclosure of Russian Activity Sparks Criticism From Lawmakers – The Wall Street Journal
  119. Twitter takes its turn in the Russian probe spotlight – Politico
  120. Twitter Says It Found 201 Russia-Linked Accounts That Aimed to Influence U.S. Election – Fox Business
  121. TWITTER STORMS – Civicist
  122. JACK DORSEY TAKES HIS TURN IN THE RUSSIA PROBE BARREL – Vanity Fair
  123. Fake News on Twitter Flooded Swing States That Helped Trump Win – Mother Jones
  124. Twitter to Testify Before Senate in Russia Probe – US News
  125. Researchers find that Twitter bots can be used for good – Tech Crunch
  126. Twitter Bots Can Encourage Decent Conduct, Not Just Fake News – News18
  127. Twitter bots for good: USC ISI study reveals how information spreads on social media – EurekAlert!
  128. Germany Election So Far Unaffected by ‘Fake News’ – Snopes
  129. Social media ‘bots’ tried to influence the U.S. election. Germany may be nextScience
  130. Computational propaganda poses challengeGlobal Times
  131. Russia’s propaganda machine amplifies alt-right – The Hill
  132. #FireMcMaster, Not Damore: Twitter Bots Are Thriving, And They’re More Lethal Than Ever – Fast Company
  133. Why didn’t Macron leaks carry more clout in the French presidential election? USC News
  134. The curious case of ‘Nicole Mincey,’ the Trump fan who may actually be a botThe Washington Post
  135. Trump Thanked A ‘Supporter’ On Twitter, Then A Mystery UnraveledA Plus
  136. Spreading fake news becomes standard practice for governments across the world – The Washington Post
  137. One in five bots sharing fake news during France’s presidential election were also involved in the United States’ – ZME Science
  138. Black-market bots, duped humans are responsible for derailing elections with fake news – ThinkProgress
  139. Study: Bots have turned Twitter into a powerful political disinformation platform – Venture Beat
  140. Fake news bots are so economical, you can use them over and over – Harvard NiemanLab
  141. Pro-Trump Twitter bots were also used to target Macron, research shows – The Verge
  142. There’s a Bit of Overlap Between Bots Trying to Manipulate American and French Elections – New York Magazine
  143. Research links pro-Trump, anti-Macron Twitter bots – The Hill
  144. The Same Twitter Bots That Helped Trump Tried to Sink Macron, Researcher Says – VICE
  145. How the Hashtag Is Changing Warfare – SIGNAL
  146. How Twitter Is Being Gamed to Feed Misinformation – New York Times
  147. ‘Something fishy’ is going on with Trump’s twitter account, researchers say – Washington Post
  148. Inside Russia’s Social Media War on America – TIME (cover story)
  149. The Twitter Bots Who Tried to Steal France – Daily Beast
  150. When Facebook and Instagram Think You’re Depressed – VICE
  151. Twitter Has a Serious Problem—And It’s Actually a Bigger Deal Than People Realize – Mother Jones
  152. Sleeping Beauties of Science – Scientific American
  153. Twitter Bot — or Not? – The New York Times
  154. After political Twitter bot revelation, are companies at risk? – Computer World
  155. Searching for proof of Amy – San Francisco Examiner
  156. News That 48 Million Of Twitter’s Users May Be Bots Could Impact Its Valuation – Forbes
  157. How to save Twitter, two pennies at a time – The Denver Post
  158. How Understanding Identity Can Help Avoid Fraudulent Traffic – DMNews
  159. Fake accounts scandal weighs on Twitter boss – The Times
  160. Pressure Grows on Twitter CEO Dorsey Amid Bot Scandal – The Street
  161. CMO Today: Marketers and Political Wonks Gather for SXSW – The Wall Street Journal
  162. Huge number of Twitter accounts are not operated by humans – ABC News
  163. Early Twitter investor Chris Sacca says he ‘hates’ the stock, calls bot issue ‘embarrassing’ – CNBC
  164. Up to 48 million Twitter accounts are bots, study says – CNET
  165. R u bot or not? – VICE
  166. New Machine Learning Framework Uncovers Twitter’s Vast Bot Population – VICE/Motherboard
  167. A Whopping 48 Million Twitter Accounts Are Actually Just Bots, Study Says – Tech Times
  168. 15 Percent Of Twitter Accounts May Be Bots [STUDY] – Value Walk
  169. Why the Rise of Bots is a Concern for Social Networks – Enterpreneuer
  170. Study reveals whopping 48M Twitter accounts are actually bots – CBS News
  171. Twitter is home to nearly 48 million bots, according to report – The Daily Dot
  172. As many as 48 million Twitter accounts aren’t people, says study – CNBC
  173. New Study Says 48 Million Accounts On Twitter Are Bots – We are social media
  174. Almost 48 million Twitter accounts are bots – Axios
  175. Twitter user accounts: around 15% or 48 million are bots [study] – The Vanguard
  176. Report: 48 Million Twitter Accounts Are Bots – Breitbart
  177. Rise of the TWITTERBOTS – Daily Mail
  178. 15 per cent of Twitter is bots, but not the Kardashian kind – The Inquirer
  179. 48 mn Twitter accounts are bots, says study – The Economic Times
  180. 9-15 per cent of Twitter accounts are bots, reveals study – Financial Express
  181. Nearly 48 million Twitter accounts are bots: study – Deccan herald
  182. Study: Nearly 48 Million Twitter Accounts Are Fake; Many Push Political Agendas – The Libertarian Republic
  183. As many as 48 million accounts on Twitter are actually bots, study finds – Sacramento Bee
  184. Study Reveals Roughly 48M Twitter Accounts Are Actually Bots – CBS DFW
  185. Up to 48 million Twitter accounts may be Bots – Financial Buzz
  186. Up to 15% of Twitter accounts are not real people – Blasting News
  187. Tech Bytes: Twitter is Being Invaded by Bots – WDIO Eyewitness News
  188. About 9-15% of Twitter accounts are bots: Study – The Indian Express
  189. Twitter Has Nearly 48 Million Bot Accounts, So Don’t Get Hurt By All Those Online Trolls – India Times
  190. Twitter May Have 45 Million Bots on Its Hands – Investopedia
  191. Bots run amok on Twitter – My Broadband
  192. 9-15% of Twitter accounts are bots: Study – MENA FN
  193. Up To 15 Percent Of Twitter Users Are Bots, Study Says – Vocativ
  194. 48 million active Twitter accounts could be bots – Gearbrain
  195. Study: 15% of Twitter accounts could be bots – Marketing Dive
  196. 15% of Twitter users are actually bots, study claims – MemeBurn
  197. Almost 48 million Twitter accounts are bots – Click Lancashire
  198. As many as 48 million or around 15% of Twitter accounts are bots – TechWorm
  199. Twitter Has an Overwhelming 48 Million Bot Accounts – GineersNow
  200. Data Mining Reveals the Rise of ISIS Propaganda on Twitter – MIT Technology Review
  201. Data Mining Technology Helped Analyze ISIS Rise to Power – iHLS
  202. As a conservative Twitter user sleeps, his account is hard at work – Washington Post
  203. How a Chicago man posts hundreds of pro-Trump tweets each day – Daily Herald
  204. You’ve probably been tricked by fake news and don’t know it – Science News
  205. Twitter Bots Favored Trump Leading Up to Election – U.S. News
  206. How the Bot-y Politic Influenced This Election – MIT Technology Review
  207. Facebook, Twitter & Trump – The New York Review of Books
  208. How Twitter bots played a role in electing Donald Trump – WIRED
  209. Twitter Bots Pollute Public’s Understanding of Politics – Newsweek
  210. How Twitter bots helped Donald Trump win the US presidential election – Arstechnica
  211. On Twitter, No One Knows You Are a Trump Bot – Fast Company
  212. The Algorithmic Democracy – Fast Co. Design
  213. Election 2016 Belongs to the Twitter Bots – VICE
  214. USC Study Finds Many Political Tweets Come From Fake Accounts – CACM News
  215. Almost a fifth of election chatter on Twitter comes from bots – Fusion
  216. Study reports that nearly 20% of election-related tweets were ‘algorithmically driven’ – Talking New Media
  217. How Twitter bots affected the US presidential campaign – The Conversation
  218. Advertising is driving social media-fuelled fake news and it is here to stay – The Conversation
  219. 20% of All Election Related Tweets Came From Non-Humans – Futurism
  220. Twitter Bots Dominate 2016 Presidential Election: New Study – Heavy
  221. Tracking The Election With Social Media In Real-Time: How Accurate Is It? – Heavy
  222. BOTS ‘SWAY’ ELECTION Fake tweets by social media robots could swing US Presidential election – The Sun
  223. A fifth of all US election tweets have come from bots – ABC News
  224. The Trump factor tipped to spread to Australian politics as Aussie Truthers push on social media – News .com.au
  225. There are 400,000 Bots That Just Tweet Political Views All Day – Investopedia
  226. Real, or not? USC study finds many political tweets come from fake accounts – Science Blog
  227. Software bots distort Donald Trump support on Twitter: Study – ETCIO
  228. How hackers, social bots, data analysts shaped the U.S. election – The Nation
  229. That swarm of political tweets in your feed? Many could be from bots – The Business Journals
  230. Software ‘bots’ distort Trump support on Twitter – New Vision
  231. Bots Invade Twitter, Spreads Misinformation On US Election – EconoTimes
  232. Software ‘bots’ seen skewing support for Trump on Twitter – The Japan Times
  233. US Presidential Elections 2016: Bot-generated fake tweets influencing US election outcome, says new study – Indian Express
  234. US elections 2016: Researchers show how Twitter bots are trying to influence the poll in favour of Trump – International Business Times
  235. Aliens, and the autopsy into Hillary Clinton’s political death – Toronto SUN
  236. Hillary vs Trump: Most of the election chatter online by Twitter bots, says study – Tech 2 First Post
  237. Twitter bots distort Trump support – iAfrica
  238. Social Media ‘Bots’ Working To Influence U.S. Election – CBS San Francisco
  239. Almost a fifth of election chatter on Twitter comes from bots – Full Act
  240. Software ‘bots’ distort Trump support on Twitter: study – Yahoo! News
  241. Bots Will Break 2016 US Elections Results – iTechPost
  242. Scientist Worries Robot-Generated Tweets Could Compromise The Presidential Election – Newsroom America
  243. Software ‘bots’ distort Trump support on Twitter: study – Phys.org
  244. Spotlight: Fake tweets endanger integrity of U.S. presidential election – XinhuanNet
  245. New Study: Twitter Bots Amount for One-Fifth of US Election Conversation – Dispatch Weekly
  246. Are Robot generated Tweets compromising US Polls? – TechRadar India
  247. Fake tweets endanger integrity of US presidential election – Global Times
  248. Software ‘bots’ distort Trump support on Twitter: study – The Daily Star
  249. Software ‘bots’ distort Trump support on Twitter: study – News Dog
  250. Malicious Twitter bots could have profound consequences for the election – RawStory
  251. ‘Robot-generated fake tweets influencing US election outcome’ – Daily News & Analysis
  252. Sophisticated Bot-Generated Tweets Could Influence Outcome of US Presidential Election – Telegiz
  253. UIC Journal Shows ‘Bots’ Sway Political Discourse, Could Impact Election – NewsWise
  254. Bot-generated tweets could threaten integrity of 2016 US presidential election: Study – BGR
  255. Bot generated tweets influence US Presidential election polls – I4U News
  256. High percentage of robot-generated fake tweets likely to influence public opinion – NewsGram
  257. ‘Robot-generated fake tweets influencing US election outcome’ – Press Trust of India
  258. Robot-generated fake tweets influencing US election outcome: Study – IndianExpress
  259. Fake Tweets, real consequences for the election – Phys.org
  260. Real, or not? USC study finds many political tweets come from fake accounts – USC News
  261. We’re in a digital world filled with lots of social bots – USC News
  262. 23 reasons to get excited about data – IBM Watson Analytics
  263. Algorithm knows when corporate money is pushing memes online – New Scientist
  264. Algorithm identifies artificially promoted Twitter memes and hashtags – The Stack
  265. La fórmula científica que te podría convertir en la próxima Cara Delevingne – Vanitatis
  266. Social Network Sleuths: Investigators Pursue Criminal Gangs Via Phone Chatter – Homeland Security Today
  267. The More You Comment Online, The Dumber Your Comments Become – Huffington Post
  268. The longer you’re on the web, the less interesting your commentary becomes – USC News
  269. Cool study, bro: Why Reddit comments degrade over time – USC Press Room
  270. On Twitter, your positive tweets are actually contagiousThe Daily Dot
  271. Happiness is contagious – USC Viterbi News
  272. Pro-Trump Twitter Bots at Center of Nevada Mystery – Wall Street Journal
  273. How Ebola Infected Twitter: When it comes to sharing online, nothing spreads like fear – Nautilus
  274. Web of lies: Is the internet making a world without truth? – New Scientist
  275. The Top 100 Big Data Experts to Follow in 2016 – Maptive
  276. How DARPA Took On the Twitter Bot Menace with One Hand Behind Its Back – MIT Technology Review
  277. The US government held a contest to identify evil propaganda robots on Facebook and Twitter – Business Insider
  278. Why you need to purge your Twitter feed of angry peopleThe Telegraph
  279. Twitter Emotions Are Contagious, Says New Study, But At Least The Positive Ones Are More So Than The Negative OnesBustle
  280. Twitter users more likely to share happiness than sadness – The Rakyat Post
  281. Twitter reacts positively to upbeat emotions, study findsUSC News
  282. Positive emotions more contagious than negative ones on TwitterPhys.org
  283. On Twitter, Is the Next POTUS a Bot-US?Wall Street Journal
  284. Why Does Facebook Keep Suggesting You Friend Your Tinder Matches?Vice
  285. New data suggest social media brings out the best in us, after allQuartz
  286. Bad news travels fast but positive posts spread wideThe Straits Times
  287. Positive content has greater reachBusiness First Magazine
  288. Data Shows that Positive Content Does Better on Social MediaGood
  289. Why can’t Twitter kill its bots?Fusion
  290. The Algorithm of Instagram FashionThe Science Times
  291. THE SCIENCE OF A SUPERMODELVogue
  292. Here’s how to predict next season’s breakout starsDazed
  293. Instagram Can Determine Which Models Rule the Runway at Fashion WeekStyleCaster
  294. Instagram to predict next ‘It Girl’?HLN Tv
  295. Wondering Who’ll Be This Season’s Breakout Models? Apparently There’s A Mathematical Formula For ThatGrazia Daily
  296. Study Concludes Runway Models With Hips Have a Harder Time Being It Girls – Styleite
  297. FMD Featured in Indiana University Study to Predict Popular Models for NYFWSBWire
  298. NYFW: Instagram May Be Able To Predict Fashion Week’s Top ModelsUniversity Herald
  299. Scientists Can Now Predict How Successful A Model Will BeAskMen
  300. Stylebook snapshot: Researchers study impact of Instagram on models’ successPittsburg Post Gazette
  301. VIDEO: Instagram can predict top models for New York Fashion WeekIrish Examiner
  302. America’s Next Top Model Cycle 22 Winner Predicted By Instagram? Scientists Create Algorithm That Can Do ThatiSchoolGuide
  303. FOLLOWING INSTAGRAM MODELS FOR SCIENCE AND FASHION WEEKNews Ledge
  304. Instagram Correctly Predicts 80% Of Next Top Models At Fashion EventYibada
  305. Instagram can now predict who America’s Next Top Model will beDigital Trends
  306. INSTAGRAM WILL TELL YOU ABOUT TOP MODELS AT THE NEW YORK FASHION WEEKThe Market Business
  307. INSTAGRAM IS QUITE GOOD AT PREDICTING WHO THE NEXT TOP MODEL WILL BERegal Tribune
  308. Instagram can help predict a model’s successRed Orbit
  309. INSTAGRAM CAN HELP PREDICT INDUSTRY’S NEXT TOP MODELThe Market Business
  310. INSTAGRAM CAN MAKE ACCURATE PREDICTIONS ON SUPERMODELS’ POPULARITYMirror Daily
  311. SCIENTISTS CAN PREDICT AMERICA’S NEXT TOP MODELWall Street Hedge
  312. NEW ALGORITHM CAN HELP INSTAGRAM PREDICT AMERICA’S NEXT TOP MODELUtah People’s Post
  313. Instagram can predict the NYFW next top model with 80 percent accuracyInferse
  314. Is Instagram the new runway for fashion?Daily O
  315. How Instagram Can Predict Next Supermodels?My Tech Bits
  316. INSTAGRAM WILL TELL YOU WHO IS THE NEXT TOP MODELApex Tribune
  317. Algorithm using Instagram data can predict upcoming top modelNorthern Californian
  318. NYFW: Instagram Could Predict The Next Top ModelUniversity Herald
  319. Instagram Can Now Be Used to Predict the Fashion World’s Next SupermodeliDigitalTimes Australia Instagram, Social Media, and New York Fashion WeekPioneer News
  320. Instagram Predicts Future Of Modeling PopularityPress Examiner
  321. Instagram Predicts A Model’s Future Popularity According To Social ScientistsBustle
  322. IU SCIENTISTS CAN PREDICT AMERICA’S NEXT TOP MODEL USING INSTAGRAMI4U
  323. Instagram Could Be Used To Identify Popularity Level Of Modelsubergizmo
  324. Instagram will tell you industry’s next top modelNature World Report
  325. Next Year’s Fashion Trends: Indiana University Algorithm Employs Instagram Data To Predict The Next Top Models Immortal News
  326. Popularity of models can be gauged using Instagram, study showsTechienews
  327. INSTAGRAM CAN HELP PREDICT INDUSTRY’S NEXT TOP MODELThe market business
  328. TOP MODELS’ SUCCESS NOW DEPENDS UPON THEIR INSTAGRAM POPULARITYTrinity News Daily
  329. Who will be America’s next top model? Ask InstagramCBS News
  330. This Machine-Learning Algorithm Can Predict the Next Top ModelThe Fashion Spot
  331. New York Fashion Week 2015: Can Scientists Use Instagram To Identify Budding Models?iDigitalTimes
  332. Want To Know If You Can Be A Fashion Model? There’s A Machine-Learning Algorithm For ThatTech Times
  333. SCIENTISTS CAN USE INSTAGRAM TO PREDICT FASHION WEEK’S BIGGEST MODELSHarper’s Bazaar
  334. Scientists Can Now Predict Top Models. Sorry, TyraYahoo! Style
  335. Scientists Figure Out a Formula to Determine Top Model SuccessRacked
  336. Can You Scientifically Predict a Model’s Success?New York Magazine
  337. Machine Learning Algorithm Predicts Which New Faces Will Make It as Fashion ModelsMIT Technology Review
  338. Machine Learning Selects World’s Next Top ModelsCommunications of the ACM
  339. Slack Is Overrun With Bots. Friendly, Wonderful BotsWIRED
  340. The science of SUPERMODELS: Researchers create algorithm that scours Instagram to find the best new talentDaily Mail UK
  341. Machine learning selects world’s next top models it News
  342. IU scientists use Instagram data to forecast top models at New York Fashion WeekIU Bloomington newsroom
  343. This new study suggests sad tweets make you sadFusion
  344. The Power Of Twitter’s Emotional Influence Focus News
  345. Emotions in Tweets Are Contagious: StudyNDTV
  346. Emotions in tweets are contagious Business Standard
  347. Emotions on Twitter are contagious, says studyDNA
  348. ‘Sleeping beauty’ papers slumber for decadesNature News
  349. Even Einstein’s Research Can Take Time to MatterNew York Times
  350. ‘Sleeping beauty’ studies ahead of their timeABC Science
  351. Like Sleeping Beauty, some research lies dormant for decades, study findsPhys.org
  352. The Dayside : Kissed by a princePhysics Today
  353. The Sleeping Beauties of SciencePacific Standard
  354. Quando la ricerca è una “bella addormentata”Le Scienze
  355. Paper all’avanguardia: fanno il botto decenni dopo la pubblicazioneOggi Scienza
  356. ‘Sleeping Beauty’ studies don’t pay off for decadesFuturity
  357. Sleeping Beauty Research Papers Can Languish For Decades, Even For Albert Einstein – Tech Times
  358. Like Sleeping Beauty, Some Research Lies Dormant for Decades News Wise
  359. El estudio de Einstein que resucitó a los 60 años y otras bellas durmientesEl Pais
  360. ‘Sleeping Beauty’ Studies Don’t Pay Off for DecadesEpoch Times
  361. Like Sleeping Beauty, some research lies dormant for decades, IU study finds Indiana University Newsroom
  362. Bot or Not? By James GleickThe New York Review of Books
  363. Twitter’s Bot Problem: Katy Perry, Taylor Swift, Justin Bieber, Rihanna And Other Musicians Have Mostly Fake Followings International Business Times
  364. Why Fear Spreads Faster Than Facts on Social MediaHootsuite
  365. In Social Networking, ‘Weak’ Connections May Be the Most PowerfulVice.com
  366. Fear, Misinformation, and Social Media Complicate Ebola FightTIME
  367. Social media can improve, muddy election campaignsPittsburgh Tribune-Review
  368. How To Spot A Social Bot On TwitterMIT Technology Review
  369. Barack Obama Is Probably a Robot, and Other Lessons from ‘Bot Or Not’Vice.com
  370. Social Bots on Twitter are More Than a Minor NuisanceSocial Times
  371. An Algorithm To Identify Social Bot on Twitter Value Walk
  372. Lying, spamming and scamming on the webThe Spectator
  373. This Algorithm Tells You If A Twitter Account Is a Spam BotMashable
  374. How to Spot A Bot… or Find Out If You Sound Like OneABC News
  375. Lo strumento per distinguere bot e umani su TwitterWired.it
  376. Indiana University Will Devote $1 Million to the Study of Internet MemesThe Mary Sue
  377. The U.S. government is spending $1 million to figure out memesThe Daily Dot
  378. U.S. Military Sends Scouting Party Into the TwitterverseTIME
  379. US military studied how to influence Twitter users in Darpa-funded researchThe Guardian
  380. Twitter Inc Users Studied By US Military In Darpa-Funded ResearchValue Walk
  381. How online ‘chatbots’ are already tricking youBBC
  382. ‘Bot or Not’ App Susses Out Twitter SpambotsTom’s Guide
  383. Computer scientists develop tool for uncovering bot-controlled Twitter accountsPhys.org
  384. IU computer scientists develop tool for uncovering bot-controlled Twitter accountsIU Newsroom
  385. Criminal Gang Connections Mapped via Phone MetadataCommunications of the ACM
  386. New software can map criminal gang connectionsThe Free Press Journal
  387. Gangster science: How police use network theory to track gang membersThe Daily Dot
  388. New software can map criminal gang connectionsBusiness Standard
  389. IU researcher helps Italian police fight crimeThe Washington Times
  390. Criminal gang connections mapped via phone metadataNew Scientist
  391. Mafia Wars: How Italy’s Secret Police Use Metadata To Track Organized CrimeFast Company
  392. LogAnalysis maps the structure of gangs using phone recordsEngadget
  393. How to Detect Criminal Gangs Using Mobile Phone Data MIT Technology Review
  394. Complex networks researcher at IU fighting crime with mobile phone data IU Newsroom
  395. One Tweet if by Land Newsweek
  396. Where do Twitter trends start? Try CincinnatiThe Washington Post
  397. Study: Seattle is top Twitter trendsetter in the U.S.The Seattle Times
  398. The Top Five Trend-Setting Cities on TwitterMIT Technology Review
  399. Study Finds Cincinnati Is Major Twitter Trendsetter in U.S. CityBeat
  400. Seattle generates more nationally-trending topics on Twitter than any other U.S. city, study says GeekWire
  401. Cincinnati is leading the way on TwitterCincyBizBlog
  402. The Anatomy of the Occupy Wall Street Movement on TwitterMIT Technology Review
  403. Data dance, big data and data miningThe Why Files
  404. Cell phone data analysis dials in crime networksScience News
  405. Using statistics to catch cheats and criminalsPhysics Today
  406. Bond with the best: FaceBook vs TwitterTechKnowBits.com
  407. Study: Facebook Builds Better Communities Than TwitterThe Atlantic
  408. Facebook Builds Stronger Bonds Than Twitter, Study SaysMashable
  409. Study shows similarities between Facebook and real-world communitiesLeaders West
  410. Does Facebook Really Create Stronger Bonds Than Twitter?Daily lounge
  411. Facebook Encourages Stronger Bonds Over Twitter: Studyhashtags.org
  412. Facebook and Strongly Connected CommunitiesCornell University
  413. Driven by friendshipSpringerSelect
  414. Facebook is a communityScience Daily
  415. Data-Mining FacebookIdiro Technologies

Press in non-English media

  1. Trolls das redes sociais são inspirados por ‘curtidas’, aponta estudoISTOE (in Portuguese)
  2. Manipolazioni social nella corsa alla Casa BiancaMicron (in Italian)
  3. I bot di Twitter sono pronti a diffondere disinformazione prima delle elezioniNews H24 (in Italian)
  4. Conspiracoes da web tomam campanha presidencial dos Estados UnidosEstadao (in Portuguese)
  5. La fabbrica dei troll è tornataOggi Scienza (in Italian)
  6. La difficile lotta a bufale e teorie complottiste sul coronavirus – Le Scienze (Scientific American edition in Italian)
  7. Coronavirus : une difficile lutte contre l’épidémie de désinformation – Pour La Science (in French)
  8. Bots en Twitter: Cómo se organizan y operan – La Nacion (in Spanish)
  9. Come smascherare il bot – Le Scienze (Scientific American edition in Italian)
  10. Usar la imperfección humana para detectar botsLa Vanguardia (in Spanish)
  11. Wie man auf Twitter erkennt, dass man mit Robotern streitetDie Press (in German)
  12. Twitterbotar allt större hot mot politiska valResume (in German)
  13. Bots en Twitter incidieron en el 1-O, según un estudio – El Pais (in Spanish)
  14. I robot diventano sempre più invadenti, si fingono umani e diffondono propaganda – Il fatto quotidiano (in Italian)
  15. ‘Bots’ de Twitter van generar “contingut violent” per influir en l’1-O, segons un estudi – El Periodico (in Spanish)
  16. Bots en Twitter promovieron contenido violento en referéndum, según estudio – La Vangardia (in Spanish)
  17. Bots de Twitter van generar contingut violent abans de l’1-O – Regio 7 (in Spanish)
  18. Del mito a la realidad: hasta dónde puede llegar la manipulación electoral de los votantes – infobae (in Spanish)
  19. Los ‘bots’ contaminaron el 1 de octubre con un millón de tuits – El Pais (in Spanish)
  20. Sui social, i bot hanno influenzato le elezioni statunitensi: Ora si guarda alla Germania – Consumerismo (in Italian)
  21. Bot economy e le leggi di Asimov – Data Manager Online (in Italian)
  22. Difundir noticias falsas es algo común para todos los gobiernos del mundo – Infobae (in Spanish)
  23. El uso de los los bots de Twitter – Panama On (in Spanish)
  24. Los bots aman a Trump y odian a Macron – La Vanguardia (in Spanish)
  25. La incidencia de Fake News en las campañas de Trump y Macron – TyN Magazine (in Spanish)
  26. Twitter bilgi kirliliğini besleyenlerin oyun sahası haline nasıl geliyor?Teyit (in Turkish)
  27. Președintele Trump, prietenul roboților ruși?Cotidianul (in Turkish)
  28. El debate político en Twitter se desinfló a comparación de 2015El Patagonico (in Spanish)
  29. Twitter ist ForschungWELT (in German)
  30. Wie Fake News entstehen und warum sie eine Gefahr darstellen – CT magazine (in German)
  31. El uso de ‘bots’ en las elecciones de Francia, por Donald Trump – Sipse (in Spanish)
  32. Ugyanazok a Twitter robotok kampányoltak Trumpnak és Le Pennek – 444 (in Ukranian)
  33. Pendant la présidentielle, les robots pro-Trump ont joué les anti-Macron sur Twitter – Mashable (in French)
  34. Présidentielle française : les robots pro-Trump ont joué les anti-Macron sur Twitter – France 24 (in French)
  35. Les 18.000 bots qui ont favorisé la diffusion des MacronLeaks – Slate (in French)
  36. Macron Leaks : Les bots pro-Trump utilisés dans la campagne de désinformation – Le Monde (in French)
  37. La falsa realidad creada por los bots en Twitter – The New York Times (in Spanish)
  38. Bad Bot oder Mensch – das ist hier die Frage – Medien Milch (in German)
  39. Studie: Bis zu 48 Millionen Twitter-Nutzer sind in Wirklichkeit Bots – T3N (in German)
  40. Der Aufstieg der Twitter-Bots: 48 Millionen Nutzer sind nicht menschlich – Studie – Sputnik News (in German)
  41. Studie: Bis zu 48 Millionen Nutzer auf Twitter sind Bots – der Standard (in German)
  42. “Blade Runner”-Test für Twitter-Accounts: Bot oder Mensch? – der Standard (in German)
  43. Bot-Paradies Twitter – Sachsische Zeitung (in German)
  44. 15 Prozent Social Bots? – DLF24 (in German)
  45. TWITTER: IST JEDER SIEBTE USER EIN BOT? – UberGizmo (in German)
  46. Twitter: Bis zu 48 Millionen Bot-Profile – Heise (in German)
  47. Studie: Bis zu 15 Prozent aller aktiven, englischsprachigen Twitter-Konten sind Bots – Netzpolitik (in German)
  48. Automatische Erregung – Wiener Zeitung (in German)
  49. 15 por ciento de las cuentas de Twitter son ‘bots’: estudio – CNET (in Spanish)
  50. 48 de los 319 millones de usuarios activos de Twitter son bots – TIC Beat (in Spanish)
  51. 15% de las cuentas de Twitter son ‘bots’ – Merca 2.0 (in Spanish)
  52. 48 de los 319 de usuarios activos en Twitter son bots – MDZ (in Spanish)
  53. Twitter, paradis des «bots»? – Slate (in French)
  54. Twitter compterait 48 millions de comptes gérés par des robots – MeltyStyle (in French)
  55. Twitter : 48 millions de comptes sont des bots – blog du moderateur (in French)
  56. ’30 tot 50 miljoen actieve Twitter-accounts zijn bots’ – NOS (in Dutch)
  57. 48 εκατομμύρια χρήστες στο Twitter δεν είναι άνθρωποι, σύμφωνα με έρευνα Πηγή – LiFo (in Greek)
  58. 48 triệu người dùng Twitter là bot và mối nguy hại – Khoa Hoc Phattrien (in Vietnamese)
  59. Post-vérité – La revue européenne des médias et du numérique (in French)
  60. Twitter, 25 mila account dell’Isis – Pagina99 (in Italian)
  61. Trump su Twitter ha un esercito di bot – Il Post (in Italian)
  62. La violencia extrema del Dáesh en Twitter le ayudó a alzarse frente a Al Qaeda – MIT Technology Review (in Spanish)
  63. Così funziona la propaganda politica a colpi di bot su Twitter – La Stampa (in Italian)
  64. Así explica la ciencia la difusión de noticias falsas en los medios de comunicaciónEl Periodico (in Spanish)
  65. 10 conductas muy contagiosas – Muy Interesante (in Spanish)
  66. Robots behind the millions of tweets: “The integrity at danger” – Svenska Dagbladet (in Swedish)
  67. Elezioni Usa: il 19% dei tweet elettorali è prodotto da software – Repubblica (in Italian)
  68. ¿Cómo nos engañan los ‘bots’ online? – Autobild.es (in Spanish)
  69. El atroz encanto del terror – La Nacion (in Spanish)
  70. La bella addormentata non è una favola di Natale – Giornale dell’università di Padova (in Italian)
  71. Lo que encontramos en las redes sociales afecta cada vez más a nuestro estado de ánimoPuro Marketing (in Spanish)
  72. Tuitea la alegría, que eso se pegaPrimera Hora (in Spanish)
  73. Cómo Facebook y Twitter pueden influir en tu estado de ánimoLa Nacion (in Spanish)
  74. Study: Twitter “infects” people with positive emotionsGazeta.ru (in Russian)
  75. La joie, un sentiment virtuellement plus partagé que la tristesse sur TwitterLe Soir (in French)
  76. La joie, plus partagée que la tristesse sur TwitterLuxemburg Wort (in French)
  77. Modelle e top model, dietro il successo c’è una formula matematicaGrazia (in Italian)
  78. Come cambia la bellezza al tempo di Instagram – La Stampa (in Italian)
  79. Buzz Mode : Instagram ou la clé du succès des mannequins selon une étude de l’université de l’IndianaMelty Fashion (in French)
  80. TOP MODEL, IL SUCCESSO È IN UN ALGORITMOLettera Donna (in Italian)
  81. Un algoritmo italiano prevede il successo delle top modelCorriere (in Italian)
  82. La scienza della “super modella”: arriva l’algoritmo per scovare nuovi talenti sui socialFanpage (in Italian)
  83. Cientistas criam algoritmo que prevê o sucesso das modelos através do InstagramVisão (in Portuguese)
  84. A computer algorithm can predict the popularity of top modelsVesti (Вести.Ru in Russian)
  85. Tomorrow: the United States develop software to predict IG supermodel accuracy rate of 80%Chinatimes (in Chinese)
  86. Likes are more important than the perfect dress size Die Welt (in German)
  87. Twitterbots manipulate political debates and marketsFuturezone (in German)
  88. Il messaggio vola su FacebookFocus (pp. 78 n. 244 – Febbraio 2013) (in Italian)
  89. Come si diffondono le conversazioni? we are social (in Italian)
  90. I confini della socializzazione: non tutto si può condividereMarketingArena (in Italian)

Visit the 2024 Election Integrity Online initiative | Office: Ginsburg Hall 405G | Labs: 403H / 403J